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Abstract

We study dynamic effects of government research funding on private-sector
R&D in the pharmaceutical industry. Increases in government research grants
appear to “crowd out” private expenditures for approximately the first four
years, but start to stimulate private research in the fifth year. A reasonable
interpretation is that the direct effect of government funding is to crowd out
private basic research in the short run and stimulate private applied research
in the long run. Anecdotal data on a new class of drugs (COX-2 inhibitors)
support this interpretation. Also, empirical results show no clear effect of
government funding on output.
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1 Introduction

A major source of economic growth in advanced countries is technological improvement due

to organized research effort (Romer 1990). Because of the uncertainty inherent in research

and the fact that the output of research activity may be inappropriable, in equilibrium the

private sector might provide suboptimal levels of innovation, particularly in areas of “basic”

research (Arrow 1962; Nelson 1959). One possible solution, first proposed by Francis Bacon

(1561-1626), is for government to provide subsidies for basic research; however, government

funding of basic research might “crowd out” private basic research, mitigating its effective-

ness. On the other hand, government funding might stimulate private applied research by

adding to the stock of knowledge. The goal of this paper is to study the effects of govern-

ment research funding on private-sector research and development (R&D) expenditures and

new product development; in particular, to identify and measure crowd-out and stimulation

effects.

I use data on public and private funding of biomedical research to study the effect

of government research funding on private-sector research and development (R&D) expen-

ditures and new product development in the pharmaceutical industry. The main finding is

that increases in government research funding appear to crowd out private R&D for approx-

imately the first four years and then stimulate private research starting in the fifth year after

the increase. One reasonable interpretation is that the direct effect of government funding

is to crowd out private basic research but stimulate private applied research.to

The pharmaceutical industry is particularly well suited to a study of the relationship

between public and private R&D, since this industry is characterized by substantial levels

of both private and government funding. Research in most other R&D-intensive industries

is typically funded either primarily by government (as in the case of the aerospace and

other defense-related industries) or primarily by for-profit corporations (as in the case of
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electronics and manufacturing industries). In the pharmaceutical industry, both sectors

have substantial shares of expenditures, with government accounting for about 40% and the

drug industry for about 60% of biomedical research spending in the U.S.(National Science

Foundation 1999). In addition, the division between “basic” and “applied” research is much

more clearly defined than in other industries. Basic research into disease processes, which is

funded by government grants as well as by private companies and nonprofit organizations,

produces results which are an input into the (applied) development of pharmaceuticals,

which is funded primarily by the private sector. Unlike other government R&D efforts

(such as research for defense projects that require secrecy), detailed, project-level data are

available for government-funded biomedical research. Furthermore, virtually all products

in this industry are protected by patents (as opposed to trade secrets) and are subject to

technical regulation by the Food and Drug Administration (FDA),which means that much

more data on private R&D are publicly available than for most other research-intensive

industries.

In addition, the pharmaceutical industry is a substantial sector of the economy and

accounts for an even more substantial share of both public and private R&D expenditures.

For example, in 2001 total U.S. private-sector pharmaceutical R&D spending was $23.5

billion, accounting for 18.3% of U.S. pharmaceutical sales (PhRMA 2003). The federal

government spent over $17 billion in medical and biological research in 2001, accounting

for 23% of federal R&D spending (NSF 2002), not including the implicit subsidies of the

research and orphan drug tax credits. The inflation-adjusted level of federal spending has

tripled since 1970 (Shadid 2001) and continues to rise; Congress increased the budget of

the National Institutes of Health (NIH) by 15% in both 1998 and 1999. In the 2000 U.S.

Presidential election campaign, both major-party candidates proposed doubling the NIH

budget from its 1998 level ($12.9 billion) by 2003 (Brainard 2000), and this was more than
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achieved when Congress appropriated $27.3 billion to NIH for fiscal year 2003.1

Finally, biomedical research is important because the social gains are huge: Murphy

and Topel (2003) and Nordhaus (2003) estimate that the total value of gains in utility from

improved health and increased life expectancy in the U.S. since the year 1900 is on the order

of the increase in traditional Gross Domestic Product (GDP) over the same period. In other

words, despite the fact that health-related R&D makes up only 13.8% of total R&D (and

only 0.3% of GDP), if improvements in health and increased life expectancy were included in

GDP, the growth rate of GDP would be doubled. Lichtenberg (2003) estimates that a large

portion of the increased U.S. life expectancy is due to new drugs; in particular, the average

new drug introduced between 1970 and 1991 is estimated to have saved 18,800 life-years in

1991 alone. In other words, a substantial portion of the benefits of this research accrue to

the general public through the use of pharmaceutical products, whose U.S. sales account for

only about 1.3% of total GDP.

Not surprisingly, pharmaceutical and biotech executives and their trade groups gener-

ally view public funding of biomedical research as a good thing, and Pharmaceutical Research

and Manufacturers of America (PhRMA) actively lobbies for more of it (Pien 1999; Mullen

2000; PhRMA 2000). This seems to indicate that it is implicitly a subsidy of costs that

would otherwise be incurred by drug and biotech firms. However, such a subsidy is po-

tentially consistent with either substitution or complementarity. If publicly-funded research

reduces the need for the private sector to do its own basic research, then public research

will crowd out private research, and we will observe substitution. On the other hand, if

public funding of basic research provides new opportunities for applied research, then public

research will stimulate private research and we will observe complementarity. To further

complicate matters, it is possible for both effects to occur simultaneously.

1 While most academic research is government-funded, it is not exclusively so: Blumenthal et al. (1996)
estimate that private firms provided about $1.5 billion, or about 11.7%, of the funds supporting academic
research in the life sciences in 1994 (the latest year for which figures are available).
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The plan of this paper is as follows. Section 2 discusses basic issues important to

understanding the economics of innovation and reviews prior work. Section 3 describes the

econometric model on which the analysis is based, and Section 4 describes the data used.

Section 5 describes the results and their interpretation. Section 6 is a case study, tracing

the development of one specific class of drugs from government-funded basic research to

privately-funded applied research and product development. Section 7 concludes.

2 Basic Issues in the Economics of Innovation

Technology is a type of information, and is traditionally viewed as a public good: once

produced, perhaps at great cost, it can be used by many people and organizations at relatively

low marginal cost. Unlike physical goods or money, when technology is transfered by one

party to another, the original party still possesses it, and his or her ability to use the

technology to produce goods is not reduced by virtue of having transmitted it.

While ability to make use of technology is unaffected by transmission of information,

ability to profit from it may be greatly reduced. One may go to great lengths and expend

substantial resources on research to produce technology, only to find that the having the

technology is no longer profitable once others copy it. Without some means of protecting

rights to information, there would be no way to profit from producing information, thus very

little would be produced.

One of the main incentives for research is the existence of patent systems, which

grant to innovators monopoly rights to their discoveries for substantial (but limited) periods

of time. The main problem with patents is that they are ex post inefficient, due to these

monopoly rights. However, eliminating patents might well be even worse: in exchange for

eliminating deadweight loss due to monopoly, we might also give up much of the gains,

since the lack of ex ante profit opportunity would result in fewer new technologies. In short,
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we might eliminate the possibility of deadweight loss in some markets by eliminating those

markets — and all their remaining surplus — in their entirety.

There have been attempts to stimulate innovation without patent protection by giving

prizes for successful innovations known in advance to be useful to society (see Sobel (1995)

for an intriguing example and Che and Gale (2003) for a theoretical model), or by providing

government subsidies, in the form of either tax credits or direct cash subsidies to innovators.

Furthermore, for numerous fields in which innovative effort is thought to be under-provided

by the private sector — particularly in areas designated as “basic” as opposed to “applied”

research — subsidies are granted to academic and other not-for-profit researchers, whose

results are to some extent publicly available at marginal cost. However, patent rights to

derivative innovations may be available to the same researchers who were given subsidies.2

Another rationale for providing government grants for basic research is the belief that

more basic research is not only beneficial in its own right, but also stimulates private-sector

applied research, which produces economic growth. This rationale is often explicitly cited

by policy makers to justify government spending,3 and there is some empirical evidence

indicating that government-funded scientific research is an important input into patentable

applied research.4

However, there is a downside to this policy as well. With government funding of basic

research, the results of which are to be publicly available,5 the private returns to basic re-

2 In the U.S., this has been the case especially since the passage of the U.S. Patent and Trademark
Amendments Act of 1980 (the “Bayh-Dole Act”) and subsequent amendments in 1984.

3 For example, Rep. Vernon Ehlers, Ph.D. (R-MI), speaking on the House floor on May 14, 1999, explicitly
invoked this rationale to advocate continued funding of basic research. After pointing out that he is the first
physicist ever elected to Congress, he cited the example of how the basic physics research aimed at measuring
the magnetic moment of the nucleus eventually lead to the development of the medical diagnostic tool known
as magnetic resonance imaging (MRI). He concluded, “Basic research drives the engine of medicine, it drives
the engine of our economy, and it is high time we recognize that investing in basic science is a good investment
for the future, with a very good rate of return.” He did not give any empirical estimates of the rate of return
(Ehlers 1999).

4 See, for example, Narin, Hamilton, and Olivastro (1997).
5 Notwithstanding the provisions of the Bayh-Dole Act mentioned above, government research grants

generally result in publication of results. Bayh-Dole Act provisions have the effect of applying to inventions
derived from federal basic research, rather than basic research results themselves. For example, a math-
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search are reduced, for two reasons. First, if the government is funding research and making

the results available for free, there is little benefit to a private firm’s spending money to do

research in the same field that might produce similar results. Second, and more important,

since government-funded research is publicly available, there is little opportunity to appropri-

ate the results of any research in that particular field, either by means of secrecy or patents,

since a private firm’s research might well be replicated by publicly-reporting researchers

working in the same field. Thus, the overall incentives to private firms for conducting basic

research are substantially reduced. Government expenditures undertaken to increase the

total quantity of basic research (and thereby stimulate private applied research) might in

fact “crowd out” private basic research. This would, in turn, reduce the stimulatory effect

on applied research. Indeed, if the crowd-out effect is strong enough, or if inappropriability

of basic research extends far enough, it might even be the case that increased government

basic research decreases private applied research.

The idea here is as follows: suppose a government-subsidized “basic” researcher makes

a new discovery about a disease, which is likely to be useful for developing a drug to treat

that disease. The discovery is published, and it is common knowledge that by incurring a

positive cost, any of several firms could do the research to develop a drug based on this

discovery. It might be that a monopolist in this type of treatment could recover the cost and

make a profit, but if two or more firms incur the cost, develop the drug, and compete, none

will recover its costs. In a sort of reverse prisoners’ dilemma, the equilibrium outcome might

be that no firm develops the drug. (This outcome would not be a Nash equilibrium.) In most

cases, however, there will be enough uncertainty in the rate and likelihood of successfully

developing the drug that this extreme situation will not occur.

ematician with a National Science Foundation (NSF) grant for research on linear programming methods
would have to report his theorems and algorithms publicly, but the Bayh-Dole Act would permit him to
retain copyright and other rights to software implementing the algorithms. Likewise, a medical researcher
would have to report publicly on the nature of a disease process discovered using a federal grant, but would
be permitted to obtain a patent on a drug designed to block that disease process.
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Causal links between government basic science and technological progress have been

difficult to establish empirically. Some “spillover” studies attempt to link universities and

government laboratories to firms that are geographically nearby and appear to benefit from

having the scientists nearby (Jaffe, Trajtenberg, and Henderson 1993). Others focus on some

sort of link through which information flows; for example, Adams, Chiang, and Jensen (2003)

study the Cooperative Research and Development Agreements (CRADAs) between national

laboratories and private firms, and Jaffe, Fogarty, and Banks (1998) measure spillovers by

the number of citations of patents issued to federal labs in other patents issued to private

inventors. A series of studies (Narin and Olivastro 1992; Narin, Hamilton, and Olivastro

1997; Deng, Lev, and Narin 1999) measures the impact of university research by counting

citations to journal articles in patents owned by firms.

The question of whether government sponsorship of basic research crowds out (sub-

stitutes) or stimulates (complements) private basic and applied research must be answered

empirically. There have been surprisingly few attempts to do so, despite the fact that the

federal government has been funding scientific research for over half a century, and that the

issue has been discussed by policy makers for even longer. Most previous work related to the

effect of government R&D spending concerns not government research grants as such, but

rather the effect of government research contracts, R&D subsidies, or tax credits awarded to

for-profit firms.

Crowd-out effects have been found by Joglekar and Hamburg (1983, 1986), Irwin and

Klenow (1996a, 1996b), and Lach (2000). Wallsten (2000) found nearly dollar-for-dollar

crowding out of private expenditures by government grants in the Small Business Innovation

Research Program (SBIR) program, and Gans and Stern (2000) found that the performance

of projects funded by SBIR is highest in industries that also have the highest level of venture

capital financing.6

6 For a further survey of the literature, see David, Hall, and Toole (2000).
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These last two findings indicate that the SBIR program is probably funding infra-

marginal projects, perhaps because program administrators have incentives to fund projects

that appear likely to produce successful innovations and therefore fund projects that also

happen to have higher expected private returns. In the case of medical research, an internal

NIH study (NIH, 2000) makes this nearly explicit: it summarizes the major events in the

development of the “top five” drugs, as measured by worldwide sales in 1994, and examines

the role of NIH funding in the basic research (and scientist training) that can be linked to

those drugs. The government’s funding of medical research projects is explicitly justified on

the grounds that it leads to top-selling drugs.

Although “basic science” projects are, by definition, undertaken without a specific

commercial product in mind, managers of government agencies often have specific guidelines,

mission statements, and goals, not to mention incentives to demonstrate that their programs

are worthwhile and should be funded in the future. In both the SBIR and NIH cases, the

projects touted for their profit potential are ipso facto those most likely to be able to attract

funding from the private sector, precisely because they have higher expected private returns.

Thus, the incentives faced by SBIR and NIH program administrators have the effect of

minimizing the actual impact of their programs on R&D expenditures, since they induce

funding decisions that selectively crowd out, rather than complement, private investment.

Levy and Terleckyj (1983) find that while contract spending has a large and statis-

tically significant complementarity with privately-funded R&D, the effect of grant R&D on

private R&D has a regression coefficient that is small and statistically insignificant – and

initially negative, but turning positive after a lag of three years. Levin and Reiss (1984)

found a small positive effect and a small decrease in the elasticity of unit cost in the same

year, with no consideration of lagged effects. Diamond (1999) finds a positive relationship

between aggregate federal basic research spending and aggregate private R&D spending in

all subject areas reported by the National Science Foundation; however, he uses only first
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differences, does not control for any other variables, and (since the unit of observation is

research in a subject area) does not consider that different levels of funding may lead to

different outcomes in different fields of research.

David and Hall (1999) construct a theoretical model of interaction between public and

private R&D which predicts that increased public spending on R&D, whether through grants,

contracts, or subsidies, must necessarily raise prices and “crowd out” private R&D spending

— unless the public spending has stimulatory effects that increase the demand for private

R&D inputs by enough to compensate. This is consistent with Goolsbee’s (1998) finding

that a large portion of federal R&D spending accrues to increased salaries for scientists and

engineers rather than to more research. Also, since privately- and publicly-funded researchers

are hired in the same market, federal research spending increases the price of R&D for private

firms, thus directly crowding out private R&D.

Several studies have focused on the benefits of biomedical research subsidies by them-

selves. Reaves (1995) investigated the effects of the Orphan Drug Act (ODA), which provides

market exclusivity and a 50% tax credit for clinical trials of drugs used to treat rare diseases.

She reports that in the decade prior to enactment, only ten drugs that would have qualified

as orphan drugs were introduced. In the first decade after ODA, over 400 substances received

the orphan drug designation, and over 100 designated orphan drugs were approved by the

FDA. Lichtenberg (2001) is one of the few studies that do not take government funding

to be exogenous; he finds that federal expenditures on research related to specific diseases

is strongly positively correlated with the total number of life-years lost to those diseases

before age 65, and federal expenditures on research related to chronic conditions is strongly

positively correlated with the number of people whose activities are limited by those condi-

tions. Cockburn and Henderson (2001) survey a number of studies of the effects of public

research on the pharmaceutical industry and conclude that the social rate of return from

public funding of biomedical research is very high, perhaps as high as 30%. This not out of
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line with other estimates, though it is lower than those of Murphy and Topel (2003).

The study that comes closest to the present one in intent is that by Ward and Dranove

(1995), who treat pharmaceutical innovation as a flow of information through three stages:

government-funded basic research, publication in medical journals, and industry-funded drug

development. They report that a 1% increase in the budget of a constituent institutes of the

NIH corresponds to a cumulative increase in private spending in a linked research category

of 0.57-0.76% over seven years. Five of the seven lag coefficients are positive, and only the

sixth-order lag is significant at the 5% level.

In this study, we use an updated and expanded version of the same data for industry

R&D, but a much more detailed set of data for government-sponsored R&D. With data at the

project level rather than the NIH institute level, we are able to finely categorize projects and

allocate them more precisely to the corresponding industry R&D therapeutic categories. This

also allows us to include projects in therapeutic categories that do not have corresponding

NIH institutes, and to avoid the problem of classifying funding in the wrong category when

a project is funded in the “wrong” institute,7 as might happen for political or budgetary

reasons, or when a research program has subcomponents that cut across categories. In

addition, we adjust expenditures to constant dollars using the Biomedical Research and

Development Price Index (BRDPI), a price index specifically designed for biomedical R&D

inputs, whereas previous studies adjust expenditures either using the GDP deflator or, more

commonly, do not adjust for inflation at all.8 We find more negative regression coefficients on

federal R&D, mostly in the lags of the fourth order and lower, and these negative coefficients

are more pronounced for BRDPI-adjusted data than for current-dollar data. We interpret

the negative coefficients in lower-order lags and positive coefficients in higher-order lags as

7 Dranove mentions that he has observed this in his work with NIH committees (Ward and Dranove 1995,
p. 81n).

8 One of the few exceptions is Jensen’s (1987) study of the relationship between firm-level R&D ex-
penditures, firm size, and research productivity in the drug industry. She used an ad hoc index consisting
of a weighted average of the index of hourly labor compensation (49%) and the implicit deflator in the
non-financial corporations sector (51%), as suggested by S. Jaffe (1972).
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a substitution in the short run but complementarity in the long run. This is consistent with

a model in which publicly-sponsored basic research “crowds out” private basic research but

stimulates private applied research.

3 Models of Scientific Research

3.1 Models of the Research Process

The simplest — and surely the earliest — model of the scientific research process is the

so-called “linear model” proposed by Francis Bacon (1561-1626) and still the dominant

assumption in science policy discourse today. According this model, technological progress

is produced by a simple three-step process:

Scientist
(Labor)

-

Basic
Research

Knowledge -

Applied
Research

Technology -

Development
Product

The first step is “basic research,” which is scientific inquiry oriented toward understanding

natural processes rather than toward producing marketable products or making profits.9

Basic research produces “scientific knowledge,” which is a non-rival public good. That is, it

can be used by anyone without reducing the stock available to others. Scientific knowledge

is an input into the second step, “applied research,” which is scientific inquiry oriented

toward solving specific problems with some practical aim in mind. Applied research produces

“technology,” which in this context means some new process that might be economically

useful. The third step, “development” consists of taking the technology and producing

9 Some practitioners of basic research are quite explicit about their intent not to aim for discoveries
with financial value and use the term “pure research” to describe research with scientific but not financial
value. Needless to say, many discoveries of pure research are later found to have great financial value. For
example, research into abstract algebra and number theory, arguably the purest of “pure mathematics” has
produced the main input into cryptography, which is now a multi-billion-dollar industry protecting financial
transactions and trade secrets.
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a potentially marketable product or service that makes (potentially) profitable use of the

technology.

Like all models, this is somewhat of an oversimplification. Applied research aimed

at producing a technology often generates questions that need to be answered, but whose

answers consist of basic scientific knowledge. Technology is used to develop products (e.g.,

scientific instruments) that make new types of basic research possible or new lines of inquiry

interesting. And, sometimes, basic research results in new technology without any interven-

ing “applied research” step (see footnote 9, for example). Nevertheless, the linear model

is a reasonable representation of the pharmaceutical industry, in which basic research into

the nature of diseases produces knowledge of their mechanisms or causes. Applied research

is aimed at blocking those mechanisms and causes, often by characterizing a hypothetical

molecule that could interfere with a biochemical mechanism. Development consists of con-

structing such a molecule that is effective and non-toxic to humans, developing a form and

and determining a level of dosage, and verifying safety and efficacy of the final drug.

3.2 Economic Models of Research

We are concerned primarily with incentives that encourage firms to undertake costly research

and development. A firm’s decisions must be based on an attempt to equate the firm’s

expected marginal cost of R&D with its expected marginal return, appropriately adjusting

for risk. The main sources of risk are uncertainty as to whether and when the research will

produce a marketable product and what the demand for that product will be. In the case of

pharmaceuticals, demand for a product is a fairly predictable function of the prevalence of

relevant diseases and availability, cost, and efficacy of other drugs used to treat those diseases.

From the standpoint of the pharmaceutical firm, the main source of risk is uncertainty as to

the success of the applied research program, which may produce a marketable drug quickly
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or slowly, at low cost, high cost, or not at all even after incurring large costs. There is also

the risk that a competitor will develop a drug with similar therapeutic properties, in which

case two patent-protected monopolies will function in the market as a duopoly, reducing

profits to both firms.10

Basic research is inherently more risky than applied research, since there is additional

uncertainty as to whether the knowledge produced will be useful in developing products.

Furthermore, since basic scientific knowledge cannot be protected by patents and is often

difficult to keep secret, there is also the risk that the research output will become inappropri-

able, allowing competing firms to take advantage of the knowledge and produce a competing

product without incurring the same costs. The possibility of “free riding” can reduce the ex

ante expected return to the firm to well below the social return, thus causing the firm to un-

derinvest in basic research relative to the social optimum. This is the fundamental problem

with obtaining the optimal level of basic research through ordinary market processes, first

explicitly identified by Nelson (1959) and Arrow (1962), and also the basic justification for

government subsidies of basic research.

A firm’s optimal expenditure on basic research is some function of the following form:

BR = f(C,R(A))

where

BR = Basic Research expenditure

C = Unit Cost of Research (including wages of researchers)

R = Firm’s (utility) of return, i.e., risk-adjusted expected return

A = A measure of the degree and likelihood of appropriability of discoveries

Clearly, f ′(C) < 0, f ′(R) > 0, and R′(A) > 0. However, the firm’s return R(A) may

10 This has been the case with several recently-developed drugs, including histamine-2 blockers (Tagamet
and Zantac) and COX-2 inhibitors (Celebrex and Vioxx).
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be greater or less than the social return, and R(A) may increase or decrease with an increase

in government funding of basic research.

It is possible that a firm’s private return may be greater than the social return in a

case where the firm’s innovation is appropriable and represents an unambiguous improvement

over an existing technology. For example, Firm A may have a drug to treat a certain disease,

and Firm B might develop a drug that treats the same disease more effectively (perhaps only

slightly so) but at the same or lower cost. Once Firm B’s drug is available, there will be

very little demand for Firm A’s drug. In this case, the social return is determined by the

value of the improvement in effectiveness — i.e., the marginal value — of the new drug over

the old one. However, Firm B’s return is determined by the total value of the benefit of the

new drug rather than the marginal value, since consumers’ willingness to pay is based on

the total benefit received.

More commonly, a firm’s private return will be less than the social return. Even

as a monopolist, the firm generally cannot perfectly price-discriminate, and the utility to

some consumers will be very large. Furthermore, the existence of alternative technologies

(e.g., drugs) may prevent the firm from charging the full monopoly price, even if at the

price actually charged the firm has almost all the market share. More importantly, in many

cases the firm will not be able to appropriate fully the value of the underlying innovation.

For example, Firm A might perform basic research and discover how a particular disease

works, then develop a drug to block the disease process. In the course of obtaining FDA

approval and marketing the drug, Firm A will have to reveal what it discovered about the

disease process (its “basic research” results). Unlike the drug itself, this information cannot

be protected by patents. Firm B could then use that information to develop a superior

(“next-generation”) drug, which might eliminate the demand for Firm A’s drug.11

11 Kealey (1995, pp. 226-230) has dubbed this the “second-mover advantage,” citing the case of SmithK-
line, which spent years doing basic research on stomach ulcers, discovered the role of histamine-2 in producing
them, and introduced the first drug to block it (Tagamet). A Glaxo scientist attented a lecture by SmithK-
line’s leading ulcer researcher, and shortly thereafter Glaxo began work on what became a more potent
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Public spending on basic research can have two effects on the returns to private

research. First, when the government undertakes a research program (the results of which

will be publicly available), it is less likely that an individual firm’s private research program

on the same topic will produce appropriable results, since similar results are likely to be

published and thus available to the firm’s competitors as a result of the government research

program. Furthermore, the firm itself will also be able to access the results of the government

research program at a much lower cost than that of conducting its own research, therefore

the marginal effect of a private research program on the firm’s stock of knowledge will be

much lower in the presence of a similar public research program. Both of these factors will

produce a “crowding-out” (substitution) effect, in which each additional dollar of government

research reduces the returns to, and thus the level of, private research.

On the other hand, when the government undertakes a research program and makes

the results publicly available, the stock of scientific knowledge available to all firms increases,

and this results in an increase in the opportunities for applied research. Although the infor-

mation is available to all firms, the marginal cost to each firm of producing applied results

is lower since the firm does not have to incur the cost of basic research. This will produce

a “stimulation” (complementarity) effect, in which each additional dollar of government

research increases the returns to and thus the level of private research.

In theory, either or both of these effects may be present; if both are present, which

effect will dominate is an empirical question. The goal of this paper is to examine the

relationship between public funding of basic biomedical research and private R&D funding

and output in the pharmaceutical industry; in particular, to determine whether, on the

whole, public research funding “crowds out” (substitutes for) or “stimulates” (complements)

private R&D expenditures in this industry.

histamine-2 blocker (Zantac). Zantac turned out to be much more profitable than Tagamet, and David Jack
of Glaxo admitted publicly that, “The original thinking had been done by Jim Black [of SmithKline].”
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Since research does not take place instantaneously, it is reasonable to believe that

any effect of federal research grants on private R&D will be felt only after some period of

time. However, it is not obvious how long the lag will be. If, for example, pharmaceutical

research firms regularly monitor grants made by the NIH and take care to complement (or

alternatively, take care not to replicate) research funded by the government, then the lag may

be quite short, and the effect on private R&D would be positive (alternatively, negative).

On the other hand, if not enough information is available at the time the grant is made for

firms to use this as as basis for decision-making, then the firms would instead have to base

decisions on research results (e.g., publications), and the lag would be longer.12 Furthermore,

if the main interaction between federally funded research and private research is that firms

apply knowledge obtained through federally funded research directly to development of new

drugs, then we would expect a substantially longer lag and a positive effect.

It is possible, of course, for more than one of these effects to be important. For

example, there could be short-run substitution or complementarity due to the effect of federal

grant announcements on firms’ R&D planning, and long-run complementarity due to the

effect of academic research results on firms’ applied research and product development. It is

difficult, however, to imagine a scenario in which the long-run effect would be substitution.

That is, for a unit increase in federal spending at a particular point in time, it would be

reasonable to expect either an increase or a decrease in private spending in the short run,

but in the long run we should expect no change or an increase in private spending, ceteris

paribus.

A firm’s optimal expenditure on applied research is a function of the above variables

12 Pharmaceutical firms definitely monitor academic research (Pien 1999; Mullen 2000), which is mostly
federally funded (Blumenthal et al. 1996). The question here is not whether firms make use of this infor-
mation, but at what stage of the process the information becomes useful. It is often the case that as an
academic research program progresses, it becomes “too applied” to qualify for continued federal funding.
At that point, sometimes a private firm will fund further applied research by the academic lab (Pien 1999).
Indeed, Blumenthal et al. estimated that more than 11% of academic research in the life sciences is funded
by corporations. This counts as private R&D in our data.
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as well as variables that might indicate demand for the type of product that is the ultimate

goal of the research program. A reasonable characterization of the research expenditures of

the pharmaceutical industry is

PhRMAt = f(Xt, . . . , Xt−j) + g(Xt−j−1, . . . , Xt−j−k) + h(other variables) (1)

where

PhRMAt is private research spending by the pharmaceutical
industry in year t;

Xt, . . . , Xt−j are government biomedical research spending in year
t and years preceding t (short-run lags);

Xt−j−1, . . . , Xt−j−k are government biomedical research spending in years
preceding year (t − j) (long-run lags).

The functions f and g will have negative first derivatives where the “crowd-out” effect dom-

inates, and positive first derivatives where the “stimulant” effect dominates. In particular,

if the short-run effect is the opposite of the long-run effect, then j is the lag at which the

effect reverses (i.e., where the sign of the derivative changes).

4 Data

4.1 Drug Industry Research

Data on private-sector research are collected by PhRMA, an industry group whose members

include virtually all major U.S. firms conducting pharmaceutical research. PhRMA surveys

its members annually13 and publishes data on R&D spending by therapeutic category. These

therapeutic categories correspond to the five-digit Standard Industrial Classification (SIC)

13 Except 1984. Available data for 1984 include total budgeted R&D but not total actual R&D or
breakdown by therapeutic category. Apparently, PhRMA did not conduct the survey for 1984, and current
PhRMA staff said they do not know why. In order to avoid losing too many degrees of freedom in distributed-
lag regressions, the 1984 values for each category are estimated here by linearly interpolating the share of
R&D devoted to that category based on the 1983 and 1985 shares and then multiplying the estimated share
by the total budgeted R&D.
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codes used by the Census Bureau for reporting drug shipments (sales) in the Current Indus-

trial Reports for the pharmaceutical industry. The relevant therapeutic categories, together

with private and federal R&D spending and drug sales for the most recent year available,

are listed in Table 1.

4.2 Government-sponsored Research

Data on publicly-funded biomedical research were obtained from the NIH, which has pub-

lished on CD-ROM project-level data on virtually every biomedical research project funded

by the federal government (through the U.S. Public Health Service) from 1972 to 1996. This

database, called CRISP (Computer Retrieval of Information on Scientific Projects), includes

both “intramural” projects of government organizations, such as the NIH and the FDA, and

“extramural” projects, funded by grants to researchers at outside organizations, primarily

universities and teaching hospitals. Although CRISP includes more recent project, it does

not include funding levels after 1996. The bulk of the funding (over 80%) goes to extramural

projects.

Each record in the CRISP database corresponds to a single project during a single

fiscal year. (Multi-year projects appear in the database separately for each year.) Each

record includes the grant number, principal investigator, project title, sometimes an abstract,

amount of funding for that fiscal year, various other items, and a list of “thesaurus terms,”

some of which describe the disease or diseases to which the particular project is related.

These “thesaurus terms” come from a controlled vocabulary organized in a hierarchical

structure (much like a library’s subject index), in which lower-level entries correspond to

more specific diseases. Using this “tree-structure” of diseases,14 the thesaurus terms can be

14 This “tree-structure” was not publicly available from NIH until recently. While one could look up each
project and find the thesaurus terms assigned to it, the list of terms and the hierarchical structure used
by NIH to assign them was published only once, in book form in 1989. It was not published again, or in
machine-readable form at all, until 1997. In addition, many terms were changed from one year to the next,
but a year-by-year historical concordance was never published. NIH did not release the concordance and

18



aggregated into thirty-five “top-level” disease categories, and then those disease categories

can be further aggregated into the seven therapeutic categories corresponding to the seven

(five-digit) SIC codes used by PhRMA to report private R&D and by the Census Bureau to

report drug shipments.

This aggregation process unfortunately cannot perfectly match research grants on

diseases to SIC codes of drugs used to treat those diseases. The most obvious problem is

that the SIC codes are extremely broad-based, and it is often difficult to determine which of

the detailed disease categories match which SIC therapeutic categories. However, the more

serious problem is that the SIC codes each correspond, not to a class of diseases, but to a

particular organ system or disease process on which the drug acts (see Table 1). In some

cases, a drug can act on one organ system to treat a disease that is primarily associated

with another organ system. For example, a grant for research on the effects of cholesterol

on heart disease might be classified as “cardiovascular” research, since the research concerns

diseases of the cardiovascular system. However, development and sales of a cholesterol-

reducing drug would be classified in the “digestive” SIC category because the drug itself

“acts on the digestive system.” PhRMA reports all private-sector data, including both

research expenditures and sales, using the SIC “drug acting on organ system” therapeutic

categories, and the Census Bureau reports sales on this basis as well.

After assigning each thesaurus term to a therapeutic category, each of the 1,137,498

projects funded between 1972 and 1996 was assigned to one or more therapeutic categories

based on its thesaurus terms. Following Lichtenberg (2001), the full funding level of each

project is counted in each category for which it has a thesaurus term listed. Although this

results in multiple counting of research dollars, this is appropriate when considering research

the updated thesaurus until Prof. Frank Lichtenberg of Columbia University filed a Freedom of Information
Act request to obtain the thesaurus tree and the coding system used to link terms which changed from one
year to the next. In 1997 and 1998, NIH included a list of thesaurus terms on the CD-ROMs for those years,
but not the coding system or the historical concordance — and also did not include the funding levels. I am
grateful to Prof. Lichtenberg for providing me with the thesaurus he obtained, complete with the coding
system and the year-by-year historical concordance.
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spending at the category level since a project that impacts multiple therapeutic categories

will affect private research decisions in all those categories.Figure 1 displays the level of public

(“Grants”) and private (“PhRMA”) funding for each of the seven therapeutic categories for

the period 1972-1996.

One problem with analyzing spending data covering such a long period of time is

that prices change. Fortunately, there is a price index specifically tailored to prices of inputs

to medical research. The Biomedical Research and Development Price Index (BRDPI),

developed by the Bureau of Economic Analysis (BEA) of the U.S. Department of Commerce

primarily for NIH budgeting purposes, measures the average price of all inputs (including

salaries of scientists) to biomedical research purchased with the NIH budget. These inputs

are likely to be similar to those purchased for anyone performing biomedical research, so this

price index is used to adjust both public and private expenditure data to constant dollars.

5 Empirical Results and Interpretation

Lag structure can be investigated by running distributed lag regressions of the log-changes of

private R&D on the log-changes of federal research funding, for each of the seven therapeutic

categories for which we have data and for the total funding levels (for all categories put

together, netting out the “double-counted” research discussed on page 19). The functional

form for these regressions is

Yt = a +
k
∑

i=0

biXt−i + h(other variables) (2)

where

Yt = log

(

yt

yt−1

)

, yt = Private R&D in year t

Xt = log

(

xt

xt−1

)

, xt = Federal research grants in year t

k = the number of lags, ranging from 0 to 7
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For each of the seven therapeutic categories and for the total funding levels, regressions of

the above form were run for each possible number of lags k = 0 . . . 7. Regressions using

log-changes instead of first differences are reported, since log-changes can be interpreted as

relative (percentage) changes and are not sensitive to the scale of the variables, and thus

are more useful for comparisons. (In any case, results of regressions using first differences

are qualitatively similar.) In addition, regressions were run with data for all categories

combined, with dummy variables for each category, as well as year dummy variables and

various combinations of other variables. The “other variables” are used as controls, to

increase the chance that the effects observed are actually from changes in government funding

rather than from other factors. In particular, we control for autocorrelation (using lagged

values of the dependent variable), GDP growth, lagged sales growth (by drug category),

current and lagged non-medical federal R&D spending (replacing the independent variables),

and category and year dummy variables.

Each regression coefficient bi may be interpreted as the effect on private R&D in year

t of an increase in federal funding in the same therapeutic category in year t − i. For any

particular regression, the sum of the coefficients
∑k

i=0 bi may be interpreted as the cumulative

effect on private R&D over k years, of a 1% increase in in federal funding in a single year.

5.1 Basic Results

Table 2 shows the results of the distributed-lag regressions (2) with grants and PhRMA

expenditures adjusted to constant (1972) dollars using the BRDPI. Each cell in the table

contains the sum of coefficients for the regression with the given number of lags, which

represents the cumulative impact on private R&D in the given therapeutic category of a

1% change in federal grants in that category in a single year. Numbers in parenthesis are

t-statistics for the hypothesis test that the sum of the coefficients is zero for the correspond-
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ing regression.15Figure 2 displays, for each category (and for total research), a plot of the

cumulative predicted percentage change in private R&D spending for each subsequent year,

corresponding to a +1% change in an initial year, for figures in both current and constant

dollars.

Note that although the results are different for each category, there is a discernible

pattern: over a small number of lags, the cumulative effect is negative in five of the seven

categories, and small but generally increasing in the other two. For longer lags, the cumu-

lative effect is more likely to be positive, and by the seventh lag is positive for all but one

category. The final column shows the average, over all therapeutic categories, of the sum

of coefficients for a particular number of lags k. Here the same pattern is discernible; the

average cumulative effect is negative for lags zero through four, and positive (and increasing)

for lags five through seven.

It is apparent from the graphs in Figure 2 that for all categories, the cumulative

15 Note that each number in parenthesis in Table 2 is the t-statistic of the sum of the coefficients bi, i =
0 . . . k. This is of course different from the standard error of any particular coefficient, and is not calculated
as part of the usual regression procedure. To calculate this t-statistic, consider the regression equation (2)

above. Add and subtract
∑k

i=1
biXt to both sides (note that this summation is of the current (non-lagged)

value Xt multiplied by the coefficients of the lagged values). Then, collect like terms in Xt as follows:

Yt = a +

k
∑

i=0

biXt−i +

(

k
∑

i=1

biXt −
k
∑

i=1

biXt

)

+ h(other variables)

Yt = a + b0Xt +

k
∑

i=1

biXt−i +

k
∑

i=1

biXt −
k
∑

i=1

biXt + h(other variables)

Yt = a +

(

b0Xt +

k
∑

i=1

biXt

)

+

(

k
∑

i=1

biXt−i −
k
∑

i=1

biXt

)

+ h(other variables)

Yt = a +

(

k
∑

i=0

bi

)

Xt +
k
∑

i=1

bi(Xt−i − Xt) + h(other variables)

This produces an alternate regression in Xt and the transformed variables (Xt−i − Xt), i = 1 . . . k. The
coefficients (both true and estimated) of the transformed variables are exactly the same as those of the
corresponding original variables Xt−i, i = 1 . . . k in (2), but the coefficient of Xt in the alternate regression
is the sum of the coefficients of the original variables Xt−i, i = 0 . . . k in the original regression. Thus, I
estimate the alternate regression above, and report the t-statistic of the coefficient of Xt in the alternate
regression in parenthesis in Table 2.
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effect on private R&D spending shows a definite negative response at least at some point

within the first two years, and the effect increases at some point thereafter. For all but two

categories the cumulative response after seven years is higher than the initial response, and

the ultimate response is usually positive. Note also that the responses for constant (i.e.,

BRDPI-adjusted) dollars are more pronounced and usually more negative than those for

current dollars.

In other words, due to the fact that both prices and quantities are increasing over

time, the crowd-out (substitution) effect is more pronounced when the expenditures are

adjusted for inflation. This may account for the fact that this study finds more crowding-

out than do previous studies, since previous studies either used only current-dollar data or

adjusted prices using the more general GDP implicit price deflator rather than the BRDPI,

a price index that is specific to biomedical R&D inputs.

5.2 Interpretation

To interpret these results, first note that for regressions with “Grants” as the independent

variable and “PhRMA spending” as the dependent variable, the sums of coefficients are

generally negative when zero through four lags are in the regression (5 negative, 2 positive),

split (3 negative, 4 positive) when 5 or 6 lags are included, and generally positive (6 positive,

1 negative) with 7 lags. (The results are similar for a “pooled” regression, i.e., a single

regression that includes observations for all categories.)

There is one very obvious story that would explain the existence of positive sums only

in the higher lags — specifically, that government grants stimulate private research, but only

five or more years into the future — but the combination of negative and positive results

requires a more subtle explanation. Recall that government grants are primarily intended for

basic research. These grants crowd out private basic research, because a private firm will not
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be willing to spend its resources doing basic research in a particular field if the government is

doing it anyway and will publish the results for both itself and its competitors, essentially for

free. However, when basic research results become known to a private firm (either through

reading results of public research, as in this story, or by doing their own research, as in the

counterfactual case of no government funding), this increased knowledge leads to an increase

in (the returns to) applied research by that firm. So what we observe in these data is the

effect of government (basic) research crowding out private basic research but stimulating

private applied research. Since the lag for stimulating applied research is longer (firms can

respond only after the research is completed and the results become known), this shows up

in the data as crowding-out in the short run but stimulation in the long run.

This story is consistent with the prediction of any reasonable theoretical model that

distinguishes between basic and applied research (a distinction that is less problematic in

biomedical research than in other fields) and allows that the government specializes in basic

research. It also implies that in this case, we can rule out the extreme crowd-out effect

described on page 6.

5.3 Robustness Checks

Numerous robustness checks were performed to verify that the results obtained above were

not spurious or the result of other factors. For example, vector autoregressions (VAR) of the

form

Yt = a +
k
∑

i=0

biXt−i +
k−1
∑

i=1

aiYt−i + b log

(

yt−1

xt−1

)

(3)

can be used to determine whether the observed lag effects are due to actual lagged correlation

between federal and private research, as opposed to mere autocorrelation in private research

combined with the fact that both types of spending are generally increasing. An an F -

test can then be applied to test this form against the corresponding regression without the
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autocorrelation terms.

Table 3 lists the results of running regressions (3) and using the F -test to decide

whether the additional coefficients included in (3) but not (2) are significantly different

from zero. For six of the seven therapeutic categories, the hypothesis that autoregressive

terms should be excluded cannot be rejected at significance level α = .05. Thus, we might

reasonably conclude that changes in the level of grants are better predictors of changes in

private R&D than previous (“momentum”) changes in private R&D. However, this result

is rather weak, since for four of the seven categories, the complementary hypothesis (that

all but the autoregressive terms should be excluded) also cannot be rejected at significance

level α = .05.

In addition to the F -tests, the coefficients of the vector autoregressions (VAR) can

be used to calculate the cumulative average effect of a single unit change in federal research

spending on private spending in subsequent years, considering direct as well as autoregressive

effects. Results of these calculations appear in Table 4 and are plotted in Figure 3. Note that

there is no consistent pattern of cumulative effects when autoregressive terms are included; in

particular, the “
⋃

-shaped” pattern of short-run substitution and long-run complementarity

observed for grants is not observed for lagged private R&D. Therefore, it is reasonable to

conclude that this effect is not due to spurious autocorrelation in private R&D.

Having ruled out autoregressive effects, it is necessary to control for other factors

that might affect private R&D spending. Clearly, private pharmaceutical R&D spending

is driven by demand for pharmaceuticals. Firms may allocate funds to different disease

categories based on estimates of demand for drugs used to treat those diseases. To control

for this effect, we use lagged drug sales (dollar volume) in each category as a proxy for

demand in that category. Firms may also respond to a general increase in demand caused

by an increase in overall income. To control for this effect, we use GDP as the measure

of income. In addition, we can increase the effective sample size by including data for all
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categories in the sample, in some cases with dummy variables to examine category fixed

effects. The functional form is

Yjt = a +
k
∑

i=0

biXj,t−i + h(other variables) (4)

where

Yjt = log

(

yjt

yj,t−1

)

, yjt = Private R&D for category j in year t

Xjt = log

(

xjt

xj,t−1

)

, xjt = Federal grants for category j in year t

Tables 5 and 6 shows the results of the distributed-lag regression (4) with various

combinations of other variables, including GDP, drug sales (by category), and category and

year dummy variables to control for fixed effects. These results show the same pattern in

the coefficients as those without the control variables, indicating that the profile of negative

short-run effects and positive long-run effects is not driven by these other variables. In fact,

estimates of the regression coefficients are only slightly affected by including these other

variables. This may be seen clearly in the plots shown in Figure 4.

In order to quantify the significance of the ‘
⋃

-shaped” pattern of coefficients, Table 7

shows the t-statistics for test of the null hypothesis that the cumulative effect of a change

in PhRMA spending is linear over time, against the alternative that the cumulative effect is

lower in the short run than the long-run linear trend. The idea here is that in the absence

of crowding-out in the short run, the sum of the first k lag coefficients in a regression with

n lags, will be about k/n of the sum of all n lag coefficients. Relative crowding-out in the

shorter lags is indicated by negative t-statistics for the corresponding coefficient sums.

The pattern of effects of grants on private spending is not present in the pattern of

effects of drug sales on private spending, as one can see immediately from the results in

Table 8 and Figure 5. Indeed, in the early years (short lags), the effect of sales on private

research is the opposite of the effect of grants. The effect of sales is positive in the first
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three years and negative in the fourth year. This pattern holds whether or not we control

for grants, GDP, and category and year fixed effects. From this, we may conclude that

the ‘
⋃

-shaped” pattern of short-run substitution and long-run complementarity is driven by

federal grants and not drug sales.

Next, we wish to rule out the possibility that the “
⋃

-shaped” pattern of coefficients

is the result of some omitted variable driving all sorts of federal support for research (rather

than just in-category medical research) and perhaps private research as well. To do this,

non-medical federal R&D spending was obtained by subtracting total federal spending on

medical research from total federal R&D spending, as reported by the National Science

Foundation (NSF, 2000). Then, total non-medical federal research expenditures replaced

the federal grants for medical research as the independent variable in regression (4).

The results are shown in Table 9 and Figure 6. The obvious absence of the same

“
⋃

-shaped” pattern of coefficients of non-medical federal research spending indicates that

the pattern is not the result of some other factor driving all research spending.

Attempting to use instrumental variables to check for serial correlation in the residuals

was impractical due to the lack of suitable instruments. All reasonable candidates proved to

be uncorrelated with the independent variables.

5.4 Medical Research and Drug Sales

Medical research expenditure, whether by a private or public entity, benefits consumers only

when it results in production of useful new goods or services. While the connection between

specific research projects and specific new products is often difficult to discern (especially for

basic research), it should be the case that increases in overall research effort should eventually

lead to increased consumption of related goods. Research by pharmaceutical companies

should lead to new drugs, an outcome that may well be observable as increases in total drug
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sales in a particular therapeutic category.16 In addition, if government-sponsored research

is of ultimate economic benefit, increases in government research funding in a particular

category may eventually show up as an increase in drug sales in that category.17

Running distributed-lag and VAR regressions with the dollar value of drug sales as the

dependent variable and federal and private research spending (separately) as the independent

variables allows examination of this effect. The forms of these regressions are the same as in

(2) and (3), but with yt as the dollar value of drug sales in year t, and xt as the amount of

public grants or private R&D expenditures, respectively.

Table 10 shows results of the distributed lag regressions with yt as the dollar value

of drug sales in year t and xt as federal research spending, and Table 11 shows comparable

results with xt as PhRMA research spending. Figure 7 illustrates the cumulative response

of drug sales in each category to a unit change in federal grants and (separately) a unit

change in PhRMA spending in that category. Note that, as we would expect, the magnitude

of the apparent effect for both types of R&D spending is small in the short run, and large

in the long run. However, for some categories the long-run effects are large and negative

rather than large and positive. This is the case for both grants and PhRMA spending in two

categories and for PhRMA spending in a third category as well. The presence of negative

effects of R&D spending on sales bears further investigation. It is quite likely, given the

length of time it takes to do research and the lengthy regulatory process required to bring a

drug to market, that the true effect of R&D spending on drug sales is not seen in the first

seven years after the research dollars are spent. Unfortunately, with only 25 years’ worth

of data, it is not possible to study such long-term effects adequately. It is possible to drop

early lag terms from the regression, but extending the lag structure back much farther would

16 But not necessarily, since new drugs may simply replace older drugs they render obsolete.
17 Unfortunately, for reasons described on p. 19, there is not perfect correlation between the disease

category in which research is classified and the therapeutic category in which sales of the resulting drug is
classified.
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result in the loss of too many degrees of freedom. Autoregressive effects of drug sales show

no particular pattern.

6 A case in point: The case of COX-2 inhibitors

To supplement the theoretical and statistical links between government-funded research and

pharmaceutical development, it would be useful to confirm the link with specific evidence

indicating that government and private research efforts interact in the way we think they

do. In this section, we will trace the development of an important new class of drugs

developed over a decade or so and introduced to the market in 1999, with an emphasis on

reviewing the sources of funding for critical pieces of research. These drugs represent a major

advance in the treatment of rheumatoid arthritis and other inflammatory ailments, as they

reduce pain and fever as well as inflammation, and may also reduce the likelihood of colo-

rectal cancer. Essentially, these drugs have almost all the therapeutic effects of traditional

“non-steroidal anti-inflammatory drugs” (NSAIDs) such as aspirin, ibuprofen, naproxen, and

indomethacin, but with out the gastrointestinal side effects often experienced by long-term

users of traditional NSAIDs.18

The term “non-steroidal anti-inflammatory drugs” refers to a long-established class

of medications that reduce inflammation, pain, and fever. The term “non-steroidal” distin-

guishes these drugs from anti-inflammatory corticosteroids, which are much more powerful

anti-inflammatory agents but have much more serious side effects. Common NSAIDs include

aspirin and related salicylates, ibuprofen (sold under trade names such as Advil and Motrin,

for example), naproxen (sold as Naprelan and Aleve), and indomethacin (sold as Indocin).

Some common NSAIDs and COX-2 inhibitors are illustrated in Figure 8.

18 In addition to specific references cited herein, this section is based on Simmons, Wagner, and Westover
(2000), Vane and Botting (1998), DeWitt (1999) and conversations with Mr. Sumeet Sud, formerly of Merck
& Co. and Mr. Reuben Ehrlich, formerly of G. D. Searle & Co.
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This class of drugs has been well-known for centuries. The first published “clinical

trial” of an NSAID was in 1763, when Rev. Edward Stone read a report to the Royal Society

on the use of willow bark extract to treat fever (Stone 1763). In the nineteenth century,

it was discovered that the active ingredient in willow bark was salicylic acid, which was

chemically synthesized in 1860 and subsequently commercialized as a treatment for fever

and rheumatism (Vane and Botting 1998). Salicylic acid was effective, but had the side

effect of upsetting the stomach and causing ulcers. In 1898, believing that the acidity of

the compound was responsible for its ulcerative effect, Felix Hoffman of Bayer synthesized

a compound in which the “acid” portion of the molecule was replaced with an acetyl group.

This compound, acetylsalicylate, was introduced by Bayer in 1899 as aspirin (Dreser 1899). It

turned out to have the same ulcerative side effects as salicylic acid, though to a substantially

lesser degree.

By the 1960s, several new drugs with similar therapeutic effects had been discovered,

including indomethacin, ibuprofen, and naproxen. However, despite the fact that these

kinds of drugs had been in use for over two centuries, and not only had the same therapeutic

effects but also the same side effects, the mechanism by which these drugs worked remained

unknown until 1971, when the British researchers John R. Vane, J. B. Smith, and A. L.

Willis discovered that aspirin and other NSAIDs block prostaglandin synthesis by inhibiting

the enzyme Cyclooxygenase (COX), also known as Prostaglandin G/H Synthase (PGHS)

(Vane 1971; Smith and Willis 1971), a discovery for which Vane shared the 1982 Nobel Prize

in Medicine and was knighted in 1984.19

The initial discovery took place when Vane, Smith, and Willis were all in the Depart-

ment of Pharmacology at the Royal College of Surgeons of England. Their work was funded

by the Medical Research Council a British Government organization roughly equivalent to

19 Vane’s paper and Smith and Willis’ paper appeared back-to-back in the journal Nature New Biology.
They were, respectively, the fourth and twentieth most-cited 1971 papers in the Institute for Scientific
Information’s Science Citation Index (Garfield October 31, 1973; reprinted in Eugene Garfield, ed., Essays
of an Information Scientist, ISI Press, 1977, pp. 496–499).
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the National Institutes of Health in the U.S. Vane also received funding from The Wellcome

Trust, a private charitable foundation.20 In 1973, shortly after making the critical discovery

and in the midst of further work to refine the understanding of the relevant mechanisms,

Vane left the Royal College of Surgeons and, taking a core group of colleagues with him,

became Group Research and Development Director at The Wellcome Foundation,21 where

he continued his work in the private sector. It was at Wellcome, for example, that he and his

group discovered prostacyclin, a prostaglandin produced in the walls of blood vessels that

acts as a vasodilator and inhibits platelet aggregation. In 1986, Sir John left Wellcome and

founded the William Harvey Research Institute, which is part of St Bartholomew’s School of

Medicine of the University of London. The University is funded by the British government,

and the Institute also takes on contract research from clients through its affiliate, William

Harvey Research Limited.

Vane’s discovery helped explain why the same drugs both reduce inflammation and

upset the gastro-intestinal system, since prostaglandin synthesis is involved in both processes.

However, it gave no basis for finding a drug that would have the therapeutic effects without

the adverse side effects. This research “log-jam” was not broken for almost two decades,

until three university labs — independently and approximately simultaneously — discovered

that there are actually two forms of cyclooxygenase (DeWitt 1999). The previously-known

(“constitutive”) form is involved in the workings of the digestive tract, and is now known as

cyclooxygenase-1, or COX-1. The second, (“inducible”) form is involved in the inflammatory

process, and is known as cyclooxygenase-2, or COX-2.22

20 According to the Trust’s web page, at http://www.wellcome.ac.uk/en/1/awt.html, it is “an inde-
pendent research-funding charity, established under the will of Sir Henry Wellcome in 1936 . . . funded from
a private endowment.” The Trust appears to have been, at the time of Vane’s work, the sole shareholder
in The Wellcome Foundation, the successor corporation to the company founded by Henry Wellcome. The
Trust diversified its holdings in the 1980s and 1990s, eventually selling the company to Glaxo to form Glaxo
Wellcome, which merged with SmithKline Beecham in 2000 to become GlaxoSmithKline. The Wellcome
Trust claims to have no continuing special relationship with that or any other pharmaceutical company.

21 Despite its name, The Wellcome Foundation was a private pharmaceutical company — the corporate
successor to Burroughs Wellcome & Co. — not a charitable “foundation.” The “foundation” bearing the
founder’s name was and is known as The Wellcome Trust (see above).

22 More recently, some researchers speculated that there might be a third form of cyclooxygenase, which
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The three labs that discovered what is now known as COX-2 were all university labs

funded by U.S. government grants and private foundations. The first group, led by Daniel L.

Simmons of Brigham Young University, discovered a gene that produced COX-2 in murine

fibroblasts (Xie et al. 1991). This work was funded by grant from the National Institutes of

Health (NIH Grant CA42580) and a grant from the Bireley Foundation. (Simmons actually

made the initial breakthrough while a post-doctoral fellow at Harvard, supported first by

an NIH fellowship and subsequently by a fellowship from the Leukemia Society of America

(Simmons et al. 1989).)

The second group, led by Professor Donald A. Young at the University of Rochester,

was funded by two NIH Grants (DK16177 and CA47650) and the team included M. Kerry

O’Banion, a recipient of a cancer research fellowship from the J. P. Wilmot Foundation,

and Virginia Winn, a medical student at the University of Rochester (O’Banion et al. 1991;

O’Banion et al. 1992). The University of Rochester applied for and was granted a patent

on this discovery, which has become the basis for a lawsuit against the maker of the COX-

2 inhibitor drug Celebrex. The university’s patent specifically states that the work was

conducted with government support, lists one of the grant numbers, and states that, “The

government has certain rights in the invention.”23

The third group, led by Professor Harvey R. Herschman at the University of Califor-

would have a role in producing fever; and Simmons’ group at BYU has in fact isolated a third form. See, for
example, Botting (2000), Simmons et al. (1999), and Willoughby et al. (2000) and Chandrasekharan et al.
(2002).

23 The initial application for this patent was filed in 1992. This initial application and four subsequent
applications were abandoned and replaced, with the final application being submitted June 7, 1995. This
was prior to the grant dates, but after the filing dates, of the patents Searle and Merck received for Celebrex
and Vioxx, respectively (see page 33). The Rochester patent (number 6,048,850) was finally approved on
April 11, 2000 — over a year after Celebrex was introduced the the market, and almost a year after Vioxx
was introduced. The Celebrex and Vioxx patents claim only the invention of specific drugs; the Rochester
patent claims to cover the concept of selectively inhibiting COX-2. Within hours of receiving the patent, the
University of Rochester filed a patent infringement suit against both Searle, which developed Celebrex and
Pfizer, which was marketing it, claiming that the Celebrex patents were invalid and that Celebrex infringed
the University of Rochester’s patent on COX-2 inhibition. A federal court invalidated the patent, and as of
this writing (Nov. 2003), the appeal is still pending. In an amicus brief in support of Rochester, two other
universities claimed that “without basic research from the universities, the private sector will be unable to
develop pharmaceutical compounds for the public.”

32



nia, Los Angeles, was funded by a Department of Energy research contract (DE FC03 87ER

60615) and three separate NIH grants: a traditional research grant to Professor Herschman

(GM24797), an “NIH Health Physician Scientist Award” to Dean A. Kujubu, and an NIH

predoctoral “Training Grant” to Brian C. Varnum, who received his Ph.D. in 1989 and went

on to use his NIH-funded training in an industry job at Amgen, a biotechnology firm and

member of PhRMA (Kujubu et al. 1991).

After these discoveries were made, at least five major pharmaceutical firms — Merck

& Co., G. D. Searle & Co., Bristol-Myers Squibb, Novartis, and Johnson & Johnson —

began privately-funded efforts to develop drugs that would selectively inhibit COX-2 without

affecting the beneficial activity of COX-1. By 1994, both G. D. Searle & Co. and Merck &

Co. had started to file for patents to protect compounds that were candidate drugs.

Searle’s drug, now known as celecoxib (or by its brand name Celebrex), is protected

by U.S. Patents 5,563,165 (issued October 8, 1996), 5,466,823 (issued November 14, 1995),

and 5,760,068 (issued June 2, 1998), and was introduced to the research community by

(Penning et al. 1997). The drug was approved by the FDA on December 31, 1998, and is

currently marketed by Pfizer under an agreement with Pharmacia, which acquired Searle in

2000.

Merck’s drug, now known as rofecoxib (or by its brand name Vioxx), was approved less

than six months later on May 20, 1999. It is protected by U.S. Patents 5,474,995 (December

12, 1995) and 5,691,374 (November 25, 1997) and was introduced to the research community

by (Prasit and Riendeau 1997). The Merck Vioxx team later published an explanation

of their research process (Prasit et al. 1999), which described the design of the rofecoxib

molecule as a derivative of DuP 697 (see below), with changes aimed at improving oral

absorption while preserving COX-2 selectivity, especially as compared with indomethacin.

Ironically, it turns out that before COX-2 was discovered, two other companies had
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NSAIDs already in development, which are now known to be selective COX-2 inhibitors

(DeWitt 1999). E. I. du Pont de Nemours & Co. had a compound known as DuP 697,

which the developers noted was effective against inflammation but produced no intestinal

or gastric ulcers in animal studies (Gans et al. 1990). Likewise, Taisho Pharmaceuticals

Co. in Japan developed a compound known as NS-398, which they claimed was potent

against inflammation, pain, and fever, but produced “minimal stomach lesions” (Futaki et al.

1993). For some reason, development of both these compounds was discontinued, although

the structure of DuP 697 became the starting point for the development of celecoxib and

rofecoxib, which were eventually brought to market.

The funding of major steps in the development of COX-2 inhibitors, as indicated by

landmark publications, is summarized in Table 12.

Despite the many valid criticisms of the so-called “linear model,” in which government-

funded basic research leads to privately-funded applied research and privately-funded prod-

uct development, it is a fairly accurate description of what actually happened in the case of

COX-2 inhibitors. COX-2 and its role in inflammation was discovered in academic labora-

tories funded by government grants and private foundations; as soon as the results became

public, private firms funded further research, followed by development of products that took

advantage of the publicly-funded research.

The success of the linear model in this case does not carry an unambiguous public-

policy message. It might be argued that in this case public funding led to important products

that will vastly improve public health, and thus created a net social benefit. However,

it would be just as valid to argue that since private firms make substantial profits from

these products despite paying only a portion of the development costs, public funding of

the research that led to the discovery of COX-2 represents a significant subsidy to the

pharmaceutical industry.

34



In a high-risk endeavor such as medical research, where hundreds or even thousands

of projects must be funded for every one that eventually produces a noticeable impact on

public health, it is impossible to evaluate the system of funding and profit incentives simply

by examining instances of the relatively few research projects that are known ex post to

have led to successful products. This is why statistical analyses of the effects of aggregate

spending, such as that in the previous section, is an essential line of inquiry.

7 Conclusion

Due to the uncertainty inherent in research activity and the fact that the research output

may be imperfectly appropriable, the private sector might in equilibrium provide suboptimal

levels of innovative effort, particularly in areas of basic research. One possible solution is

for government to provide subsidies for basic research, in the hope that an increased stock

of basic scientific knowledge will stimulate the private sector to increase its investment in

more-appropriable applied research, and thus ultimately stimulate private-sector innovation.

But since basic research is at least partly appropriable and research inputs are inelastically

supplied, government funding of basic research may in fact crowd out private research.

Based on an analysis of data on public funding of biomedical research and private-

sector funding of R&D in the pharmaceutical industry, I find that increases in government

research funding appear to crowd out private R&D in the short run, but stimulate private

R&D in the long run. Because there is a time lag between funding of basic research and

utilizing the results, this finding is consistent with a theory that government funding crowds

out private basic research but stimulates private applied research.

The crowd-out effect is more pronounced when expenditures are deflated to constant

dollars using the Biomedical Research and Development Price Index (BRDPI), relative to

the effect observed when using current dollars, or constant dollars according to the GDP
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deflator. This is consistent with the observation that R&D inputs, particularly the services

of scientific personnel, are inelastically supplied; therefore, research subsidies increase the

price of research for private firms and thus directly crowd out private R&D.
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Table 1: Therapeutic Categories for reporting Pharmaceutical R&D and Sales

1996 ($mil)
SIC Description Private Federal Drug
Code R&D Grants Sales

28341 Affecting neoplasms, endocrine system, and metabolic diseases 2,988.2 1,465.1 4,788.0
28342 Acting on the central nervous system and sense organs 3,071.3 1,669.0 10,123.1
28343 Acting on the cardiovascular system 1,937.7 1,062.0 6,911.9
28344 Acting on the respiratory system 908.4 430.2 4,993.9
28345 Acting on the digestive or genito-urinary system 417.0 859.3 8,494.4
28346 Acting on the skin 203.8 163.5 2,184.8
28348 Acting on infective and parasitic diseases 1,959.9 972.1 7,304.1

Sources: Pharmaceutical Research and Manufacturers of America;

U.S. Department of Commerce, Bureau of the Census.
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Dependent Variable: Y = PhRMA Corporate R&D, by disease category (log changes)
Independent Variable: X = Federal Grants, by disease category (log changes)

Each cell contains the sum of coefficients for the regression with the given number of lags.
(The number in parenthesis is the t-statistic of the sum of coefficients.)
Lags
of X

Neoplasm Nervous Cardio Respir Digest Skin Infective Totalsa
Lag
Avg.b

0 -0.0535 -0.1164 0.1861 0.0211 -0.2192 -0.3045 -0.0390 -0.0241 -0.0751
(-0.4688) (-1.1386) (1.2181) (0.1691) (-1.5808) (-1.4975) (-0.4285) (-0.1090)

1 -0.1774 0.1400 -0.0118 -0.1382 -0.3630 -0.7816 -0.2536 -0.0062 -0.2265
(-1.2542) (0.9796) (-0.0576) (-0.7888) (-1.7596) (-3.0807) (-1.6133) (-0.0185)

2 -0.2187 0.3223 -0.3306 -0.4360 -0.1227 -0.3447 -0.3410 -0.1627 -0.2102
(-1.1909) (1.5741) (-1.2568) (-1.9253) (-0.4287) (-0.9883) (-1.2983) (-0.3324)

3 -0.4223 0.4384 -0.0796 -0.9203 0.0282 -0.4141 -0.4837 -0.1995 -0.2648
(-1.5813) (2.3096) (-0.2346) (-3.2325) (0.0581) (-0.8745) (-1.4086) (-0.3039)

4 -0.7133 0.5599 0.3978 -0.5734 -0.7115 -0.2896 -0.5094 -0.2267 -0.2628
(-2.0113) (3.0214) (1.0401) (-2.0989) (-1.2524) (-0.4350) (-1.2213) (-0.2738)

5 -1.0396 0.5952 0.3309 -0.4662 0.2824 0.5479 0.1050 0.0131 0.0508
(-2.1779) (3.0319) (0.6625) (-1.3259) (0.4241) (0.6357) (0.1542) (0.0148)

6 -0.8694 0.6549 0.3831 -0.6437 -0.5910 -0.0855 0.2303 -0.3217 -0.1316
(-1.1584) (2.8679) (0.5850) (-1.2984) (-0.6612) (-0.0803) (0.2562) (-0.3324)

7 -1.2730 0.5220 1.0320 -0.3441 -0.6463 -2.3354 1.2068 -0.9100 -0.2626
(-0.9083) (1.9032) (0.9596) (-0.4105) (-0.4665) (-1.3852) (1.5759) (-0.8227)

Sum -4.7672 3.1162 1.9079 -3.5009 -2.3431 -4.0075 -0.0846 -1.8379 -1.3827
Wtd.
Avg.c -0.1324 0.0866 0.0530 -0.0973 -0.0651 -0.1113 -0.0024 -0.0384
Avg.d -0.5959 0.3895 0.2385 -0.4376 -0.2929 -0.5009 -0.0106

aTotal Grants includes grants not in any disease category.
bThe average is taken over category regressions only.
cThe average cumulative response, weighted by number of coefficients; or equivalently, the average coefficient.
dThe average cumulative response over the eight regressions; i.e., each regression has equal weight.
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Table 3: Hypothesis Test of Vector Autoregression vs. Distributed Lag Regression

VAR Regression: Yt = a +

k
∑

i=0

biXt−i +

k−1
∑

i=1

aiYt−i + b log

(

yt−1

xt−1

)

Hypothesis Test: H0 : ai = 0 for all i = 1 . . . k = 1 and b = 0

HA : ai 6= 0 for at least one i

At Significance Level α = .05, Reject H0 if F > F.05

(In the table below, “Accept” is shorthand for “Fail to Reject.”)

Test Critical Test Critical
Lags Lags Statistic Value Lags Lags Statistic Value
of X of Y F F.05 Decision of X of Y F F.05 Decision
Neoplasm Digest

2 1 0.9648 3.6337 Accept 2 1 2.2875 3.6337 Accept
3 2 0.2675 3.4105 Accept 3 2 1.0788 3.4105 Accept
4 3 0.3828 3.4781 Accept 4 3 1.4012 3.4781 Accept
5 4 0.4933 3.9715 Accept 5 4 1.0504 3.9715 Accept
6 5 0.1839 6.1631 Accept 6 5 1.9518 6.1631 Accept
7 6 0.1835 236.77 Accept 7 6 5.0164 236.77 Accept

Nervous Skin
2 1 2.7405 3.6337 Accept 2 1 0.8903 3.6337 Accept
3 2 2.1960 3.4105 Accept 3 2 2.3541 3.4105 Accept
4 3 1.4429 3.4781 Accept 4 3 2.0954 3.4781 Accept
5 4 1.8754 3.9715 Accept 5 4 1.8744 3.9715 Accept
6 5 1.8284 6.1631 Accept 6 5 1.2102 6.1631 Accept
7 6 4.2841 236.77 Accept 7 6 14.430 236.77 Accept

Cardio Infective
2 1 12.834 3.6337 Reject 2 1 1.7332 3.6337 Accept
3 2 4.9248 3.4105 Reject 3 2 0.6028 3.4105 Accept
4 3 7.4959 3.4781 Reject 4 3 1.1164 3.4781 Accept
5 4 7.5147 3.9715 Reject 5 4 0.6563 3.9715 Accept
6 5 8.6870 6.1631 Reject 6 5 1.0409 6.1631 Accept
7 6 1.5835 236.77 Accept 7 6 2.0116 236.77 Accept

Respir
2 1 0.4672 3.6337 Accept
3 2 2.0460 3.4105 Accept
4 3 1.9413 3.4781 Accept
5 4 1.8909 3.9715 Accept
6 5 0.7872 6.1631 Accept
7 6 12.122 236.77 Accept
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Table 4: Cumulative Direct and VAR Effects of Log of Annual Changes in Federal Grants
on Private R&D.

(Each cell contains the change in Yt, t periods after a unit log-change in X, implied by the regression with
k lags of X and k − 1 lags of Y .)

t
k 0 1 2 3 4 5 6 7 8

N
eo

p
la

sm

2 0.0820 -0.1264 -0.0952 0.0535
3 -0.0686 -0.1488 -0.0840 0.0688 0.0145
4 -0.0731 -0.1680 -0.1643 0.1951 -0.1568 0.1005
5 -0.0325 -0.1661 -0.2430 0.1458 -0.0378 -0.0732 0.1588
6 -0.0842 -0.0277 -0.2945 -0.1024 0.0632 0.1464 0.0432 0.1687
7 -0.1449 -0.4939 -0.6464 -0.3053 -0.0949 0.1539 -0.4056 0.2742 -0.4388

N
er

vo
u
s

2 0.1993 0.1249 0.0066 -0.0508
3 0.2451 0.1633 0.1604 0.0620 -0.0647
4 -0.2162 -0.0153 0.1742 0.1486 0.0201 -0.2657
5 -0.2848 0.0371 0.2170 0.2871 -0.0045 -0.2708 -0.2845
6 -0.2817 -0.0141 0.3821 0.2406 0.0340 -0.3343 -0.1236 -0.0683
7 -0.4545 -0.3835 -0.3726 -0.5444 -0.8403 -1.5810 -2.0704 -2.9100 -3.9472

C
ar

d
io

2 -0.0100 -0.1734 -0.1376 0.1248
3 -0.0002 -0.1656 -0.1691 0.2175 0.1361
4 0.0798 -0.0173 -0.0460 0.1776 0.0694 0.1041
5 0.0019 0.0507 -0.1204 0.1929 -0.0075 -0.0414 0.1165
6 0.0669 0.0790 -0.1726 0.1489 -0.0189 -0.0855 0.1239 0.1228
7 0.0478 0.2919 -0.5498 0.6146 -0.5902 0.3795 -0.2737 0.5444 -0.2306

R
es

p
ir

2 -0.0755 -0.0463 -0.1646 0.0753
3 -0.2908 -0.0999 -0.0267 -0.1356 0.1684
4 -0.2154 0.0979 -0.0734 -0.1606 0.0049 0.1991
5 -0.1814 0.1621 -0.1135 -0.0247 -0.1007 0.1233 0.1254
6 -0.3011 0.2987 -0.1910 -0.0469 -0.0848 0.0193 0.3140 -0.0500
7 0.5446 -1.2545 2.3197 -4.8543 8.8840 -12.7975 21.9974 -39.332 71.547

D
ig

es
t

2 -0.0551 0.2117 0.1161 0.1137
3 -0.1091 0.2205 0.1150 0.1616 0.0551
4 -0.1716 -0.3202 0.3934 0.0934 0.1370 0.0341
5 0.2144 -0.4541 0.8081 -0.2726 0.2440 -0.0605 -0.1054
6 0.5413 -0.1750 0.7790 -0.3744 -0.2197 -0.5083 0.1391 0.0136
7 0.9519 -0.2507 1.0648 -0.7386 0.6054 -2.7973 3.2996 -5.0791 8.5674

S
k
in

2 0.0471 -0.0571 0.4519 0.0206
3 0.1728 0.1168 0.1228 -0.1468 0.2507
4 0.3328 0.0503 0.1193 -0.3386 0.6572 -0.0976
5 0.1936 0.2742 0.0687 -0.2924 0.3033 0.3883 -0.2598
6 0.3286 0.2666 -0.2056 0.1589 -0.0599 0.6005 -0.4069 0.6669
7 12.637 -305.45 -7145.1 -1.67E5 -3.91E6 -9.15E7 -2.14E9 -5.0E10 -1.2E12

In
fe

ct
iv

e

2 -0.1897 -0.1879 -0.1333 -0.0258
3 -0.0914 -0.0571 -0.0503 -0.0812 0.0577
4 -0.0827 -0.1746 -0.1014 -0.1737 0.0152 0.0112
5 -0.1759 -0.0614 -0.0607 -0.1163 -0.1939 -0.2660 0.2560
6 -0.2465 0.2277 -0.0791 -0.0229 -0.6192 -0.6317 0.3781 1.6364
7 -0.2106 0.2351 -0.0991 0.1660 -0.5445 -0.4615 0.3083 0.9368 0.9755
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Table 5: Regression Results: Determinants of PhRMA R&D Spending

Dependent Variable: PhRMAit = PhRMA R&D in disease category j in year t (log changes)

Independent
Variable Coef. (t-stat.) Coef. (t-stat.) Coef. (t-stat.)
Intercept 0.1875 (2.41E-7) 0.0946 (1.6002) 0.0727 (1.4207)
log GDPt

GDPt−1

-0.3226 (-3.04E-8) 0.1676 (0.5104) 0.2100 (0.6435)

GRANTSt -0.0155 (-0.1001) -0.1030 (-1.1195) -0.1359 (-1.6777)
GRANTSt−1 -0.2698 (-1.7907) -0.2380 (-2.8934) -0.2617 (-3.4070)
GRANTSt−2 0.1569 (1.0240) 0.1999 (2.1082) 0.1639 (2.0469)
GRANTSt−3 0.0321 (0.2019) 0.0862 (0.8925) 0.0624 (0.7021)
GRANTSt−4 0.1569 (0.9551) 0.1242 (1.1568) 0.0923 (1.0083)
GRANTSt−5 0.1334 (1.2367) 0.1208 (1.4286) 0.0818 (1.0409)
GRANTSt−6 0.0159 (0.1486) -0.0748 (-0.9271) -0.0836 (-1.0442)
GRANTSt−7 -0.0119 (-0.1166) -0.0338 (-0.4104) -0.0559 (-0.7057)
SALESt -0.1501 (-0.7219) -0.0609 (-0.3444) -0.1069 (-0.6149)
SALESt−1 0.1173 (0.5572) 0.0034 (0.0181) -0.0055 (-0.0299)
SALESt−2 0.2340 (1.1226) 0.2866 (1.5895) 0.2694 (1.5073)
SALESt−3 0.2120 (1.0193) 0.2693 (1.5005) 0.2593 (1.4658)
SALESt−4 -0.2108 (-0.9876) -0.2094 (-1.1321) -0.1945 (-1.0670)
SALESt−5 0.0059 (0.0275) 0.0464 (0.2399) 0.0611 (0.3310)
SALESt−6 -0.4706 (-2.1543) -0.4779 (-2.4466) -0.4804 (-2.5706)
SALESt−7 -0.0197 (-0.0896) 0.0622 (0.3219) 0.0830 (0.4617)

Category Dummy Variables:
Nervous -0.0016 (-0.0336) -0.0055 (-0.1241)
Cardio -0.0068 (-0.1270) -0.0215 (-0.4321)
Respir 0.0137 (0.2931) 0.0076 (0.1719)
Digest -0.0588 (-1.2396) -0.0654 (-1.4538)
Skin -0.0630 (-1.3174) -0.0603 (-1.3487)
Infective -0.0540 (-0.9137) -0.0565 (-1.0916)

Year Dummy Variables:
1979 -0.0188 (-1.44E-8)
1980 -0.0576 (-5.66E-8)
1981 0.0448 (3.20E-8)
1982 -0.0259 (-5.18E-8)
1983 -0.0427 (-1.19E-7)
1984 -0.0447 (-5.65E-8)
1985 0.0605 (1.75E-7)
1986 -0.0568 (-5.16E-7)
1987 -0.0125 (-1.26E-7)
1988 0.0280 (7.90E-8)
1989 -0.0318 (-7.58E-8)
1990 -0.0568 (-2.27E-7)
1991 -0.0170 (-3.54E-7)
1992 -0.0538 (-2.45E-6)
1993 -0.1353 (-2.66E-6)
1994 -0.0888 (-1.22E-6)
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Table 6: Cumulative Effect of a Change in Federal Grants on Private R&D,
(Controlling for drug sales, GDP, and category and year fixed effects)

Dependent Variable: PhRMAit = PhRMA R&D in disease category j in year t (log changes)

Independent
Variables

Cumulative effect of GRANTS

(Each cell contains the log-change in PhRMAjt, k periods after a unit
log-change in GRANTS j,t−k, implied by a regression with the checked
independent variables, calculated by summing the regression coefficients
of GRANTS jt, . . . ,GRANTS j,t−k.)

S
A

L
E
S

a

G
D

P
b

C
at

eg
or

y
c

Y
ea

rd

0 1 2 3 4 5 6 7√ √ √ √
-0.0155 -0.2853 -0.1283 -0.0963 0.0607 0.1941 0.2100 0.1981√ √ √
-0.1030 -0.3410 -0.1411 -0.0549 0.0694 0.1901 0.1153 0.0815√ √
-0.1359 -0.3975 -0.2337 -0.1713 -0.0791 0.0028 -0.0808 -0.1367√ √
-0.1074 -0.3444 -0.1430 -0.0525 0.0698 0.1949 0.1333 0.1117√
-0.1428 -0.4042 -0.2400 -0.1734 -0.0850 0.0010 -0.0662 -0.1075√ √
-0.1069 -0.3541 -0.1934 -0.1395 -0.0949 0.0165 -0.0803 -0.1325√
-0.1120 -0.3602 -0.2015 -0.1448 -0.1030 0.0107 -0.0734 -0.1141√
-0.1189 -0.3741 -0.2233 -0.1757 -0.1405 -0.0468 -0.1481 -0.2075

aEach regression checked includes log changes of current and 7 lagged values of drug sales for
each category.

bEach regression checked includes log changes of GDP.
cEach regression checked includes category dummy variables.
dEach regression checked includes year dummy variables.
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Table 7: Hypothesis Tests of Cumulative Effects of Changes in Federal Grants

Yjt = a +

k
∑

i=0

biXj,t−i + h(other variables)

“Other variables” include category drug sales (lagged 0 through 7 periods), category dummy variables, and
year dummy variables where noted.

This is a test of the null hypothesis that effect of federal grants propogates linearly, against the
alternative that the cumulative effect after k years is less than k/8 of the effect over 8 years.

H0 :

k
∑

i=0

biXj,t−i =
1

k

7
∑

i=0

biXj,t−i

HA :

k
∑

i=0

biXj,t−i <
1

k

7
∑

i=0

biXj,t−i

Regressions Including Year dummy variables:

Sum of Standard Avg. Growth
k k Coef’s. Error of Coef. Sum t-stat
0 -0.0155 0.1547 0.0248 -0.2602
1 -0.2853 0.2110 0.0495 -1.5865
2 -0.1283 0.2737 0.0743 -0.7403
3 -0.0963 0.3286 0.0991 -0.5944
4 0.0607 0.4131 0.1238 -0.1529
5 0.1941 0.4527 0.1486 0.1005
6 0.2100 0.4573 0.1734 0.0802

Regressions Without Year dummy variables:

Sum of Standard Avg. Growth
k k Coef’s. Error of Coef. Sum t-stat
0 -0.1030 0.0920 0.0102 -1.2302
1 -0.3410 0.1336 0.0204 -2.7044
2 -0.1411 0.1973 0.0306 -0.8698
3 -0.0549 0.2437 0.0408 -0.3924
4 0.0694 0.3061 0.0509 0.0602
5 0.1901 0.3437 0.0611 0.3753
6 0.1153 0.3466 0.0713 0.1270
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Table 8: Cumulative Effect of a Change in Drug Sales on Private R&D,
(Controlling for Grants, GDP, and category and year fixed effects)

Dependent Variable: PhRMAit = PhRMA R&D in disease category i in year t (log changes)

Independent
Variables

Cumulative effect of SALES

(Each cell contains the log-change in PhRMAit, k periods after a unit
log-change in SALES i,t−k, implied by a regression with the checked
independent variables, calculated by summing the regression coefficients
of SALES t, . . . ,SALES t−k.)

S
A

L
E
S

a

G
D

P
b

C
at

eg
or

y
c

Y
ea

rd

0 1 2 3 4 5 6 7√ √ √ √
-0.1501 -0.0327 0.2013 0.4133 0.2025 0.2084 -0.2622 -0.2820√ √ √
-0.0609 -0.0575 0.2291 0.4984 0.2890 0.3353 -0.1426 -0.0803√ √
-0.1069 -0.1123 0.1571 0.4163 0.2218 0.2829 -0.1975 -0.1144√ √
-0.0433 -0.0293 0.2523 0.5204 0.3034 0.3524 -0.1260 -0.0751√
-0.0848 -0.0765 0.1864 0.4444 0.2414 0.3078 -0.1716 -0.1002

aEach regression includes log changes of current and 7 lagged values of drug sales for each
category.

bEach regression checked includes log changes of GDP.
cEach regression checked includes category dummy variables.
dEach regression checked includes year dummy variables.

Table 9: Cumulative Effect of a Change in Federal Grants on Private R&D,
(Controlling for drug sales, GDP, and category and year fixed effects)

Dependent Variable: PhRMAit = PhRMA R&D in disease category i in year t (log changes)

Independent
Variables

Cumulative effect of NonMed

(Each cell contains the log-change in PhRMAit, k periods after a unit
log-change in NonMed t−k, implied by a regression with the checked
independent variables, calculated by summing the regression coefficients
of NonMed t, . . . ,NonMed t−k.)

N
o
n
M

ed
a

S
A

L
E
S

b

C
at

eg
or

y
c

0 1 2 3 4 5 6 7√ √ √
-0.8607 -0.0321 1.6718 0.8551 -0.1601 0.0732 0.4733 0.5999√
-1.0576 -0.0990 1.7048 0.6208 -0.3377 -0.0331 0.3779 0.6885

aEach regression includes log changes of current and 7 lagged values of federal non-
medical R&D spending.

bEach regression checked includes log changes of current and 7 lagged values of drug sales
for each category.

cEach regression checked includes category dummies. Even though there are no categories
for NonMed , there are categories for SALES and for the dependent variable PhRMA.
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Table 10: Distributed Lag Regressions of Sales on Grants, Sum of Coefficients

Dependent Variable: Y = Shipments of Pharmaceuticals (log changes)
Independent Variable: X = Federal Grants, by disease category (log changes)

(Each cell contains the sum of coefficients for the regression with the given number of lags.)
Lags
of X

Neoplasm Nervous Cardio Respir Digest Skin Infective Lag Avg.

0 -0.0151 -0.0876 0.1586 -0.0467 -0.0133 -0.0335 0.0347 -0.0004
1 -0.0826 -0.1103 0.2283 -0.0148 -0.0775 -0.0480 0.1982 0.0133
2 -0.0921 -0.0220 0.2686 -0.0745 -0.1885 -0.0768 0.2983 0.0161
3 -0.2806 -0.0695 0.3000 -0.0618 -0.2594 -0.1030 0.4147 -0.0085
4 -0.3314 -0.2872 0.3025 -0.2752 -0.5096 -0.0994 0.4367 -0.1091
5 -0.2005 -0.3959 0.7243 -0.1225 -0.8496 0.0578 0.6751 -0.0159
6 -0.1168 -0.5538 0.8984 0.2123 -0.0419 0.1558 0.0594 0.0876
7 -0.7604 -0.6579 1.5935 0.2462 2.4307 -0.0366 1.2542 0.5814

Sum -1.8796 -2.1841 4.4743 -0.1369 0.4909 -0.1837 3.3713 0.5646
Wt. Avg.a -0.0522 -0.0607 0.1243 -0.0038 0.0136 -0.0051 0.0936 0.0157

Avg.b -0.2349 -0.2730 0.5593 -0.0171 0.0614 -0.0230 0.4214

aThe average cumulative response, weighted by number of coefficients; or equivalently, the average coefficient.

bThe average cumulative response over the eight regressions; i.e., each regression has equal weight.

Table 11: Distributed Lag Regressions of Sales on Private R&D, Sum of Coefficients

Dependent Variable: Y = Shipments of Pharmaceuticals (log changes)
Independent Variable: X = PhRMA Corporate R&D, by disease category (log changes)

(Each cell contains the sum of coefficients for the regression with the given number of lags.)
Lags
of X

Neoplasm Nervous Cardio Respir Digest Skin Infective Lag Avg.

0 0.0141 0.0055 0.3598 -0.0250 -0.0980 0.0288 0.1693 0.06493
1 -0.1550 0.0100 0.6439 0.1648 0.1049 0.0804 0.2537 0.15752
2 -0.0612 -0.1942 0.8156 0.2128 0.1756 -0.0584 0.4354 0.18937
3 -0.2125 -0.2371 0.7815 0.3658 0.0795 -0.0347 0.4427 0.16933
4 -0.4701 -0.2705 0.7529 0.3567 0.2290 0.3125 0.6641 0.22494
5 -1.1708 -0.4663 0.6550 0.3161 1.2158 -0.0416 0.2515 0.10852
6 -1.6135 -0.6936 0.4646 0.9625 1.1020 0.5136 -2.1847 -0.20703
7 -2.4096 -0.8243 0.4366 2.2342 2.0070 0.2051 -2.5360 -0.12671

Sum -6.0786 -2.6706 4.9099 4.5879 4.8159 1.0055 -2.5040 0.58086
Wt. Avg.a -0.1689 -0.0742 0.1364 0.1274 0.1338 0.0279 -0.0696 0.01614

Avg.b -0.7598 -0.3338 0.6137 0.5735 0.6020 0.1257 -0.3130

aThe average cumulative response, weighted by number of coefficients; or equivalently, the average coefficient.

bThe average cumulative response over the eight regressions; i.e., each regression has equal weight.
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Figure 1: Federal Research Grants (“Grants”) and Private R&D of
PhRMA members (“PhRMA”), by Therapeutic Category.
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Figure 2: Cumulative predicted percent change in Private (PhRMA) R&D cor-
responding to a one-time +1% change in Federal Research Grants, by Therapeutic
Category. In each plot, the solid line represents the response in current dollars;
and the dashed line in constant dollars according to the Biomedical Research and
Development Price Index (BRDPI).
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Figure 3: Cumulative Direct and Autoregressive Effects of Log of Annual Changes
in Federal Grants, on Private R&D of PhRMA members, by Therapeutic Category.
(Each line shows the cumulative change at each stage in a regression with a given
number of lags; the number of lags is shown by the extent of the line. Thus, each
chart has a line with three lags, a line with four lags, and so on.)

53



Years since +1% Change in Category Grants

C
um

ul
at

iv
e 

C
ha

ng
e 

in
 C

at
eg

or
y 

Ph
R

M
A

 R
&

D

0 1 2 3 4 5 6 7

-0.4

-0.2

0

0.2

0.4

Independent Variables included
Grants, Sales, GDP, Catg. Dums., Year Dums.        
Grants, Sales, GDP, Catg. Dums.
Grants, Sales, GDP
Grants, Sales, Catg. Dums.
Grants, Sales
Grants, GDP, Catg. Dums.
Grants, Catg. Dums.
Grants, GDP

Cumulative effects of GRANTS on PhRMA
(Sums of regression coefficients)

Year of +1% Change in Category Grants

N
th

-y
ea

r 
C

ha
ng

e 
in

 C
at

eg
or

y 
Ph

R
M

A
 R

&
D

0 1 2 3 4 5 6 7

-0.4

-0.2

0

0.2

0.4

Independent Variables included
Grants, Sales, GDP, Catg. Dums., Year Dums.        
Grants, Sales, GDP, Catg. Dums.
Grants, Sales, GDP
Grants, Sales, Catg. Dums.
Grants, Sales
Grants, GDP, Catg. Dums.
Grants, Catg. Dums.
Grants, GDP

Regression Coefficients of GRANTS
(NOT cumulative sums)

Figure 4: Upper plot: Cumulative predicted percent change in Private (PhRMA)
R&D in a category, corresponding to a one-time +1% change in Federal Research
Grants in that same category, controlling for the variables indicated.
Lower plot: Regression coefficients of Federal Research Grants used to generate
cumulative predicted percent change in the upper plot. See Equation 4 on page 26
for the functional form of the regressions.

54



Years since +1% Change in Category Sales

C
um

ul
at

iv
e 

C
ha

ng
e 

in
 C

at
eg

or
y 

Ph
R

M
A

 R
&

D

0 1 2 3 4 5 6 7

-0.4

-0.2

0

0.2

0.4

Independent Variables included
Grants, Sales, GDP, Catg. Dums., Year Dums.        
Grants, Sales, GDP, Catg. Dums.
Grants, Sales, GDP
Grants, Sales, Catg. Dums.
Grants, Sales

Cumulative effects of SALES on PhRMA
(Sums of regression coefficients)

Years since +1% Change in Category Sales

N
th

-y
ea

r 
C

ha
ng

e 
in

 C
at

eg
or

y 
Ph

R
M

A
 R

&
D

0 1 2 3 4 5 6 7

-0.4

-0.2

0

0.2

0.4

Independent Variables included
Grants, Sales, GDP, Catg. Dums., Year Dums.        
Grants, Sales, GDP, Catg. Dums.
Grants, Sales, GDP
Grants, Sales, Catg. Dums.
Grants, Sales

Regression Coefficients of SALES
(NOT cumulative sums)

Figure 5: Upper plot: Cumulative predicted percent change in Private (PhRMA)
R&D in a category, corresponding to a one-time +1% change in Pharmaceutical
Sales in that same category, controlling for the variables indicated.
Lower plot: Regression coefficients of Pharmaceutical Sales used to generate cumu-
lative predicted percent change in the upper plot. See Equation 4 on page 26 for
the functional form of the regressions.
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Figure 6: Upper plot: Cumulative predicted percent change in Private (PhRMA)
R&D in a category, corresponding to a one-time +1% change in Non-Medical Federal
R&D, controlling for the variables indicated.
Lower plot: Regression coefficients of Federal Non-Medical R&D used to generate
cumulative predicted percent change in the upper plot. See Equation 4 on page 26
for the functional form of the regressions.
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Figure 7: Cumulative predicted percent change in drug sales corresponding to a
one-time +1% change in R&D, by therapeutic category. In each plot, the solid line
represents the response to a change in federal research grants, and the dashed line
the response to a change in private (PhRMA) R&D.
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Figure 8: Chemical diagrams of important COX inhibitors and related drugs. Rofecoxib and Cele-
coxib are selective COX-2 inhibitors developed by Merck and Searle, respectively. Indomethacin,
Ibuprofen, and Diclofenac are common non-selective COX inhibitors, known as Non-Steroidal
Anti-Inflamatory Drugs (NSAIDs). Acetominophen has minimal anti-inflammatory properties, but
is otherwise clinically similar to NSAIDs. Aspirin was the first large-scale commercially-produced
NSAID.

Graphic from Figure 1 of Simmons, Daniel L; Wagner, David; and Westover, Kenneth,
“Nonsteroidal Anti-Inflammatory Drugs, Acetaminophen, Cyclooxygenase 2, and Fever,” Clinical

Infectious Disease 31(Suppl 5):S211–8 (2000). ( c© 2000 by the Infectious Diseases Society of
America. All rights reserved. Published by The University of Chicago Press. Used with permission.)
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