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Abstract

The United States has an extensive system of government funding for basic research.

The traditional rationale for this policy is that due to the inappropriability of research re-

sults, the private sector provides suboptimal levels of basic research, and government subsidy

will correct this underprovision. In addition, it is likely that higher levels of basic research

stimulate higher levels of private applied research by increasing the stock of scientific knowl-

edge. It is possible, however, that government-funded basic research “crowds out” private

basic research by reducing its private returns. This may mitigate or even reverse the former

effect, so that government funding of basic research may stimulate less, and in the extreme

case may even reduce the level of private research relative to the alternative in which basic

research is privately funded.

This paper uses data on public and private funding of biomedical research to study

the effect of government research funding on private-sector research and development (R&D)

expenditures and new product development in the pharmaceutical industry. The main find-

ing is that increases in government research funding appear to crowd out private R&D for

approximately the first four years and start to stimulate private research in the fifth year

after the increase. A reasonable interpretation is that the direct effect of government funding

is to crowd out private basic research in the short run and stimulate private applied research

in the long run. The crowding out (substitution) is more pronounced when expenditure lev-

els are measured in constant dollars according to the Biomedical Research and Development

Price Index (BRDPI), rather than in current dollars or constant dollars according to the

GDP deflator. Numerous robustness checks fail to support alternative interpretations, and

anecdotal data from the development of a new class of drugs (COX-2 inhibitors) supports

this interpretation. In addition, empirical results fail to show any clear effect of government

funding on output in the pharmaceutical industry.
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1 Introduction

It is widely, and quite reasonably, believed that the major source of economic growth in

advanced countries is technological improvement and that such technological improvement

is largely due not to chance discoveries, but rather to organized research effort (Romer 1990).

However, because of the uncertainty inherent in research activity and the fact that the out-

put of research activity may be inappropriable, it is possible that in equilibrium the private

sector might provide suboptimal levels of innovation, particularly in areas of “basic” research

(Arrow 1962; Nelson 1959). One possible solution to this problem is for government to pro-

vide subsidies for basic research. However, it is then possible that government funding of

basic research might “crowd out” private basic research, thus mitigating its effectiveness as a

solution to the underprovision problem. The goal of this paper is to study the effect of gov-

ernment research funding on private-sector research and development (R&D) expenditures

and new product development.

This paper uses data on public and private funding of biomedical research to study

the effect of government research funding on private-sector research and development (R&D)

expenditures and new product development in the pharmaceutical industry. The main find-

ing is that increases in government research funding appear to crowd out private R&D for

approximately the first four years and then stimulate private research starting in the fifth

year after the increase. One possible interpretation is that the direct effect of government

funding is to crowd out private basic research but stimulate private applied research.

The pharmaceutical industry is particularly well suited to a study of the relationship

between public and private R&D, since this industry is characterized by substantial levels of

both private and government funding. Research in most other R&D-intensive industries is

typically funded either primarily by government (as in the case of the aerospace and other

defense-related industries) or primarily by for-profit corporations (as in the case of electronics
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and manufacturing industries). However, in the case of the pharmaceutical industry, both

sectors have substantial shares of expenditures, with government accounting for about 40%

and the drug industry for about 60% of biomedical research spending in the U.S.(National

Science Foundation 1999). In addition, the division between “basic” and “applied” research

is much more clearly defined in this industry, compared to other industries. Basic research

into disease processes, which is funded by government grants as well as private companies

and nonprofit organizations, is an input into the (applied) development of pharmaceuticals,

which is funded primarily by the private sector. Unlike other government R&D efforts,

such as research for defense projects that require secrecy, detailed project-level data are

available for government-funded biomedical research. Furthermore, virtually all products

in this industry are protected by patents (rather than, for example, as trade secrets) and

are subject to technical regulation by the Food and Drug Administration (FDA),1 which

means that much more data on private R&D are available than in the case of most other

research-intensive industries.

In addition, the pharmaceutical industry is a substantial sector of the economy and

accounts for an even more substantial share of both public and private R&D expenditures.

For example, in 1998 total U.S. private-sector pharmaceutical R&D spending was $17.2 bil-

lion, accounting for 20.1% of pharmaceutical sales (PhRMA 2000). In addition, the federal

government spent over $11 billion in medical and biological research in 1998, accounting for

about one-sixth of federal R&D spending (NSF, 1999). The inflation-adjusted level of federal

spending has tripled since 1970 (Shadid 2001) and continues to rise; Congress increased the

budget of the National Institutes of Health (NIH) by 15% in both 1998 and 1999. In the 2000

U.S. Presidential election campaign, both major-party candidates proposed doubling the NIH

budget from its 1998 level (12.9billion)by2003(Brainard2000), andthiswasmorethanachievedwhenCongressappropriated27.3

billion to NIH for fiscal year 2003.

1 A list of acronyms used in this paper appears on pages 99–101.
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Finally, biomedical research is important because the social gains are huge: Murphy

and Topel (1999) and Nordhaus (1999) estimate that the total value of gains in utility from

improved health and increased life expectancy in the U.S. since the year 1900 is on the order

of the increase in traditional Gross Domestic Product (GDP) over the same period. In other

words, despite the fact that health-related R&D makes up only 13.8% of total R&D (and

only 0.3% of GDP), if improvements in health and increased life expectancy were included

in GDP, the growth rate of GDP would be doubled. Lichtenberg (1999b) estimates that a

large portion of the increased life expectancy is due to new drugs; in particular, the average

new drug introduced between 1970 and 1991 is estimated to have saved 11,200 life-years in

1991 alone. In other words, a substantial portion of the benefits of this research accrue to

the general public through the use of pharmaceutical products, whose U.S. sales account for

only about 0.94% — less than 1% — of total GDP.

Given the importance of medical research and the large roles of both government and

private industry in conducting such research, it is surprising that so little work has focused

on the interaction between the two. The study that comes closest to the present one in in-

tent is that by Ward and Dranove (1995), who treat pharmaceutical innovation as a flow of

information through three stages: government-funded basic research, publication in medical

journals, and industry-funded drug development. Their measure of government funding is

the budget of the NIH, broken down into five categories based on the constituent institutes

of the NIH. For industry R&D, they use the annual survey of the Pharmaceutical Manu-

facturers’ Association (PMA, since renamed Pharmaceutical Research and Manufacturers of

America, i.e., PhRMA), which reports industry R&D expenditures broken down into seven

therapeutic classes corresponding to five-digit Standard Industrial Classification (SIC) codes.

Ward and Dranove report results of regressions of the logarithms of industry R&D expendi-

tures on the logarithms of NIH expenditures (lagged 0-7 years) for the five PMA/PhRMA

categories which can be linked to NIH institutes. A 1% increase in own-category NIH spend-
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ing corresponds to a cumulative increase in PMA/PhRMA spending of 0.57-0.76% over seven

years. Five of the seven lag coefficients are positive, and only the sixth-order lag is significant

at the 5% level.

In this study, we use an updated version of the same data for industry R&D, but

a much more detailed set of data for government-sponsored R&D. Since we have data

at the project level rather than the NIH institute level, we are able to finely categorize

projects and allocate them more precisely to the corresponding industry R&D therapeutic

categories. This also allows us to include projects in those therapeutic categories (respiratory

and dermatological) that do not have corresponding NIH institutes. While far from perfect,

these data also avoid the problem of classifying funding in the “wrong” category when

a project is funded in the “wrong” institute, as might happen for political or budgetary

reasons, or when a research program has subcomponents that cut across categories.2 In

addition, we adjust expenditures to constant dollars using the Biomedical Research and

Development Price Index (BRDPI), a price index specifically designed for biomedical R&D

inputs, whereas previous studies adjust expenditures either using the GDP deflator or, more

commonly, not at all.3 We find more negative regression coefficients on federal R&D, mostly

in the lags of the fourth order and lower, and these negative coefficients are more pronounced

for BRDPI-adjusted data than for current-dollar data. We interpret the negative coefficients

in lower-order lags and positive coefficients in higher-order lags as a substitution in the short

run but complementarity in the long run. This is consistent with a model in which publicly-

sponsored basic research “crowds out” private basic research but stimulates private applied

research.

The plan of this paper is as follows. Section 2 discusses basic issues important to

2 Dranove mentions that he has observed this in his work with NIH committees (Ward and Dranove 1995,
p. 81n).

3 One of the few exceptions is Jensen’s (1987) study of the relationship between firm-level R&D ex-
penditures, firm size, and research productivity in the drug industry. She used an ad hoc index consisting
of a weighted average of the index of hourly labor compensation (49%) and the implicit deflator in the
non-financial corporations sector (51%), as suggested by S. Jaffe (1972).
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understanding the economics of innovation. Section 3 reviews prior studies of innovation

in general, without specific reference to the pharmaceuticals industry. Section 4 reviews

regulatory issues in the drug-development process and prior studies of the effects of regulation

on drug innovation. Section 7 describes the econometric model on which the analysis is based,

Section 6 describes the data used, Section 8 describes the results and their interpretation,

and Section 9 concludes.

2 Basic Issues in the Economics of Innovation

Technology is defined as the knowledge necessary to produce goods, and as such constitutes

information. Information is traditionally viewed as a public good: once information (or

technology) is produced, perhaps at great cost, it can be transmitted to and used by many

people and organizations at relatively low marginal cost. In particular, unlike physical goods

or money, when technology is given by one party to another, the original party still possesses

it, and his or her ability to use the technology to produce goods is not reduced by virtue of

having transmitted the technology.

While ability to make use of technology is unaffected by transmission of information,

ability to profit from the technology may be greatly reduced. Indeed, an individual or firm

may go to great lengths and expend substantial resources in research to produce technology,

only to find that it can no longer profit from the technology once others copy it. With-

out some means of protecting rights to information, there would be no way to profit from

producing information, thus very little would be produced.

One of the main incentives for research in the private sector is the existence of patent

systems, which grant to innovators monopoly rights to their discoveries for substantial (but

limited) periods of time. Of course, the main problem with patents is that they are ex post

inefficient, due to monopoly pricing. On the other hand, eliminating patents might well be
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even worse: in exchange for eliminating deadweight loss due to monopoly, we might also give

up much of the gains, since the lack of ex ante profit opportunity would result in fewer new

technologies. In short, we might eliminate the possibility of deadweight loss in some markets

by eliminating those markets — and all their remaining surplus — in their entirety.

There have been many attempts to balance the countervailing forces acting in favor

of and against patent protection. There is an extensive literature on optimal patent length

and scope, most of which finds solutions that would be difficult to implement in practice

due to the heterogeneity of new technologies and ex ante uncertainty as to their value. For

example, Nordhaus (1969) notes that, “In general it is not possible to determine the exact

value of the optimal [patent] life without knowing the parameters” such as elasticities of

demand and invention productivity and the social discount rate. More recently, Wright

(1999) notes that, “[the] optimal patent design may be broad and short-lived or narrow and

infinitely-lived depending on the market structure assumed and the properties of the demand

function.” Since these properties are different for every product and not usually known in

advance, it is virtually impossible to use these findings as a basis for policy.

There have also been attempts to stimulate innovation without any patent protection

by giving prizes for successful innovations known in advance to be useful to society (see

Sobel (1995) for an intriguing example and ?) for a theoretical model), or by providing

government subsidies, in the form of either tax credits or direct grants, to innovators. The

idea is that the government will pay the costs of innovation, the results of which will be

available to everyone at marginal cost. While this solves the problem of ex post monopoly

inefficiency, it introduces other problems, the most serious of which are how to determine

what types of research the government should subsidize and how subsidies should be allocated

among potential researchers. This type of system may be particularly useful in cases where

a specific innovation is desired, and in cases in which the innovation is a pure-information

public (i.e., non-appropriable) good. Even in this case, if prizes are available for some
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specified innovations and patents available more generally, the results may not be what one

would expect, since innovators will choose to work on projects with prizes or projects with

patents, whichever they believe will be more profitable in the long run.

In addition, many governments provide some form of subsidy directly to private firms

that conduct R&D. This can take the form of direct cash subsidies to favored businesses, as

in the case of the U.S. Small Business Innovation Research Program (SBIR), or favored fields

of innovation, as in the case of the Advanced Technology Program (ATP) of the National In-

stitute of Standards and Technology (NIST). It can also take the form of tax credits, such as

the Research and Experimentation (R&E) Tax Credit, which provides firms with tax credits

for 6.5-13% of the amount by which a firm’s annual expenditure on certain R&D-related

items causes the firm’s R&D-to-sales ratio to exceed the average ratio in certain preceding

years.4 In the U.S., when research by for-profit firms is subsidized, patent protection is gen-

erally still available, even in the case of direct cash subsidies for research. See Tassey (1997)

for a comprehensive summary of current and recent U.S. government programs and Tassey

(1996) for a comparison of the effects of tax incentives with those of direct subsidies.

Furthermore, for numerous fields in which innovative effort is thought to be under-

provided by the private sector — particularly in areas designated as “basic” as opposed to

“applied” research — subsidies are granted to academic and other not-for-profit researchers,

the results of which are to some extent publicly available at marginal cost. In most cases,

however, patent rights to derivative innovations may be available to the same researchers

who were given subsidies. This was not always the case; prior to 1980, there was no fed-

eral government-wide policy on derivative patent rights, and most funding agencies either

retained rights to patents based on discoveries by contractors and grantees or insisted on

receiving a share of resulting revenue. The U.S. Patent and Trademark Amendments Act

4 Being a tax matter, of course, it is not quite that simple. For details, see Sections 41 and 280C(c)(3) of
the Internal Revenue Code of 1986.

10



of 1980 (the “Bayh-Dole Act”) and subsequent amendments in 1984 prohibited the federal

government from retaining such rights in most cases and explicitly permitted universities

the right to obtain patents based on government-sponsored research. The result was a huge

increase in university patenting, documented and detailed by Henderson, Jaffe, and Tra-

jtenberg (1998), the economic-theoretic underpinning of which has since been explained by

Jensen and Thursby (2001). In fiscal 1997, universities earned over $446 million in patent

royalties and were awarded 2,239 new patents (Basinger 1999).

In addition to correcting the under-provision, another rationale for the policy of

providing government grants for basic research is the belief that more basic research not

only brings benefits of its own, but in addition stimulates private-sector applied research,

both of which produce economic growth. This rationale is often explicitly cited by policy

makers to justify government spending,5 and there is some empirical evidence indicating

that government-funded scientific research is an important input into patentable applied

research.6

Of course, this policy is not without its costs either. With government funding of

basic research, the results of which are to be publicly available at marginal cost,7 the private

returns to basic research are reduced. There are two reasons for this. First, if the government

is funding research and making the results available for free, there is little benefit to a

5 For example, Rep. Vernon Ehlers, Ph.D. (R-MI), speaking on the House floor on May 14, 1999, explicitly
invoked this rationale to advocate continued funding of basic research. After pointing out that he is the first
physicist ever elected to Congress, he cited the example of how the basic physics research aimed at measuring
the magnetic moment of the nucleus eventually lead to the development of the medical diagnostic tool known
as magnetic resonance imaging (MRI). He concluded, “Basic research drives the engine of medicine, it drives
the engine of our economy, and it is high time we recognize that investing in basic science is a good investment
for the future, with a very good rate of return.” He did not give any empirical estimates of the rate of return.
(Ehlers 1999)

6 See, for example, Narin, Hamilton, and Olivastro (1997) and the discussion on page 14.
7 Notwithstanding the provisions of the Bayh-Dole Act mentioned above, government research grants

generally result in publication of results. Bayh-Dole Act provisions have the effect of applying to inventions
derived from federal basic research, rather than basic research results themselves. For example, a math-
ematician with an National Science Foundation (NSF) grant for research on linear programming methods
would have to report his theorems and algorithms publicly, but the Bayh-Dole Act would permit him to
retain copyright and other rights to software implementing the algorithms. Likewise, a medical researcher
would have to report publicly on the nature of a disease process discovered using a federal grant, but would
be permitted to obtain a patent on a drug designed to block that disease process.
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private firm’s doing research in the same field that might produce similar results. Second,

and more important, since government-funded research is publicly available, there is little

opportunity to appropriate the results of any research in that particular field, either by means

of secrecy or patents, since a private firm’s research might well be replicated by publicly-

subsidized researchers working in the same field. Thus, the overall incentives to private

firms for conducting basic research are substantially reduced. Government expenditures

undertaken to increase the total quantity of basic research (and thereby stimulate private

applied research) might in fact “crowd out” private basic research. This would, in turn,

reduce the stimulatory effect on applied research. Indeed, if the crowd-out effect is strong

enough, or if inappropriability of basic research extends far enough, it might even be the

case that increased government basic research decreases private applied research.

The idea here is as follows: suppose a government-subsidized “basic” researcher makes

a new discovery about a disease, which is likely to be useful for developing a drug to treat that

disease. The discovery is published, and it is common knowledge that by incurring a positive

cost, any of several firms could do the research to develop a drug based on this discovery.

It might be that a monopolist in this type of treatment could recover the cost and make

a profit, but if two or more firms incur the cost, develop the drug, and compete, none will

recover their costs. In a sort of reverse prisoners’ dilemma, the equilibrium outcome might

be that no firm develops the drug. (This outcome would not be a Nash equilibrium.) In most

cases, however, there will be enough uncertainty in the rate and likelihood of successfully

developing the drug that this situation will not occur.

On the other hand, in cases where the the goal is well-defined and the probability of

success is sufficiently high, socially wasteful “patent races” may occur. That is, many firms

may engage in research attempting to meet the same technical goal or consumer need. This is

potentially wasteful to the extent that they duplicate each other’s production of knowledge

and also partly to the extent that they find different solutions to the same problem. If
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patent protections are sufficiently narrow, both firms may be able to sell their products as

monopolists in narrow sectors. In a related vein, Davidson and Segerstrom (1998) present

an endogenous growth model in which “imitative R&D” — that is, R&D by firms for the

purpose of producing equivalent goods without infringing existing patents — actually retards

economic growth, even as non-imitative R&D leads to faster growth.

The question of whether government sponsorship of basic research crowds out (sub-

stitutes) or stimulates (complements) private basic and applied research must be answered

empirically. There have been surprisingly few attempts to do so, despite the fact that the

federal government has been funding scientific research for over half a century, and that the

issue has been discussed by policy makers for even longer. This paper presents one attempt

to address this question.

3 Prior Studies of Research and Innovation

3.1 Basic Science and Product Innovation

According to Kealey (1995), the first influential person to advocate government funding

of science was Francis Bacon (1561-1626). Kealey also claims that Bacon was the first to

propose a “linear” model of technological progress, starting with (government-funded) basic

research producing pure scientific knowledge, which in turn becomes an input into applied

research to produce technology and eventually economic growth.

In the United States, there was little public support of pure science until after World

War II. In 1945, Vannevar Bush, who had headed the wartime Office of Scientific Research

and Development, proposed an extensive program of government-sponsored research (Bush

1945; reprinted 1960 by NSF), which was eventually implemented with the establishment

of the National Science Foundation in 1950. By 1953, federal funding of basic science had
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overtaken private funding (Kealey 1995).

The importance of technological innovation to economic progress has been well-

established among economists for decades. Nelson (1959) first raised the issue of the econom-

ically optimal level of basic research. Arrow (1962) applied the classic reasons for market

failure — “indivisibilities, inappropriability, and uncertainty” — to explain why we should

expect under-provision of research, particularly basic research.

Nevertheless, the linkage between basic science and technological improvement has

been difficult to establish empirically. First, there are “spillover” studies that attempt to

link research institutions, such as universities or government laboratories, to firms that are

geographically nearby and that appear to benefit from having the scientists nearby (Jaffe,

Trajtenberg, and Henderson 1993) or that can be shown to have some sort of link through

which information flows. For example, Adams, Chiang, and Jensen (2000) study the Co-

operative Research and Development Agreements (CRADAs) between national laboratories

and private firms, formal agreements one goal of which is the economic exploitation by the

firm of knowledge developed at the lab. Jaffe, Fogarty, and Banks (1998) measure spillovers

by examining patents issued to federal labs and measuring their impact by the number of

citations of those patents in other patents issued to private inventors.

Second, there are studies that link patents to basic science based on the scientific

articles cited on patent applications. The main legal requirements for a patent are (1) the

innovation must be new, (2) it must not be “obvious” to someone skilled in the relevant

field, and (3) it must be potentially useful.8 To establish that an innovation meets these

requirements, applicants often refer to previous patents and/or scientific publications in the

relevant field. In addition, as a patent examiner studies the patent application and previous

work in the field to determine whether the proposed innovation is “novel,” “non-obvious”

8 The basic requirements are set forth in Title 35, United States Code, Part II, Chapter 10. The patent
examiners in the U.S. Patent and Trademark Office have considerable latitude to exercise judgment in
deciding whether a proposed patent meets the requirements.
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and “useful,” he or she often adds relevant references to both patents and other literature.

If a patent is granted, these references are listed on the front page of the official patent

document and are often used in bibliometric studies.

In a study based on citations of published scientific articles in U.S. patent applications,

Narin and Olivastro (1992) found that the average number of science articles cited more than

tripled from 1975 to 1989, from an average less of than one-third of a citation per patent

in 1975 to more than one citation per patent in 1989. Pharmaceutical patents cited more

science articles than did patents in any other field, averaging 4.5 articles per patent. In

a subsequent study, Narin, Hamilton, and Olivastro (1997) found that a significant and

increasing fraction of patents cite government-funded scientific research, including research

conducted at both government and academic laboratories. For example, of all scientific

papers cited in U.S. patent applications in 1993-1994, 73% were authored at academic or

government institutions, and a substantial majority of the academic papers acknowledged

a government funding source. Taking this a step further, Deng, Lev, and Narin (1999) use

several measures of a firm’s “patent portfolio” to try to predict the firm’s stock performance.

They find that, within industries, the average number of “non-patent references” (generally

presumed to be scientific articles) listed on the first page of the firm’s patents was strongly

associated with the firm’s stock performance.9

There are, of course, some problems with bibliometric studies based on patent cita-

tions. For one thing, it is not clear what a patent citation means. Patent applications are

drafted to meet legal requirements and designed to increase the probability of success and

perhaps the scope of the granted patent. Applications are often drafted by patent special-

ists (specialized “patent attorneys” and licensed “patent agents”) rather than by inventors.

The goal of the application in general and the citations in particular is to show how the

9 They also found that stock performance is strongly associated with an index of how frequently the firm’s
patents are cited in later patents (the “patent impact”), and weakly associated with the number of patents
received and the median age of patents cited (the “technology cycle time”). These factors are important but
outside the scope of the present study.
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proposed invention is different from previous work in the area (“prior art”), not to show how

the proposed invention is derived from prior art. Furthermore, citations are often added by

the patent examiner (in addition to the applicant) in the course of his or her research to

determine whether the proposed innovation is “novel.” In this case, the cited work is likely

completely irrelevant to the inventor’s development process, rather than being an input into

it; the inventor may even have been unaware of the prior work cited. Meyer (2000) addresses

many of these issues by interviewing patent attorneys, examiners, and inventors, and includes

detailed case studies of ten particular patents. In five of the ten cases studied, the inventors

interviewed reported that, while scientific research was important for background informa-

tion about the subject, in only one of ten cases was a citation on the patent an antecedent to

the innovation patented. In many cases, the inventors were unfamiliar with articles and even

authors in citations added by patent examiners; in other cases the connection was rather

that the same inventor was active in both academic publishing and industrial research, and

his own papers were cited in the application.

Indeed, allowing publication of internal research can itself be profitable for firms

for two main reasons. First, in order to make use of basic scientific research produced by

university and publicly-funded researchers, industrial researchers must maintain active links

with academic and government researchers. Such relationships are often easier to maintain if

the firm allows publication, since there are opportunities for coauthored research (Cockburn

and Henderson 1998; Kealey 1995) and other forms of non-monetary exchange. Second,

many scientists prefer having the opportunity to publish in the scientific literature; Stern

(1999) finds that firms that allow publication can command an average wage discount of

about 25% in the scientific labor market.

Furthermore, science-based firms often have close relationships with academic scien-

tists, and firms often provide funding for academic research in areas of interest to the firm

or hire academic scientists as consultants. Blumenthal et al. (1996) surveyed over 200 firms
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in the life sciences and found that almost 90% of such firms hire academics on a consulting

basis, almost 60% sponsor academic research projects directly, and over a third support stu-

dents with grants, fellowships, or scholarships. Most pharmaceutical firms conduct clinical

trials through academic hospitals, but only 2% of firms in the sample sponsor no research

other than clinical trials. All told, Blumenthal et al. estimate that firms provided about

$1.5 billion, or about 11.7%, of the funds supporting academic research in the life sciences

in 1994. Furthermore, they estimate that firm returns (measured by patent counts, product

counts, or sales) per dollar invested in academic research are similar to returns on research

conducted elsewhere. It is therefore likely that, consistent with traditional economic theory,

firm-sponsored academic research and firm-conducted research are about equally productive

at the margin, and firms have chosen a profit-maximizing level of sponsorship of academic

research. The authors also conclude, since the dollar amount of firm-sponsored academic

research is much less than the dollar amount of government-sponsored research, that indus-

try could not make up the difference in the case of federal cutbacks. However, there is no

evidence given for this except the levels of funding themselves. On the contrary, it is possi-

ble that if government-sponsored research projects are infra-marginal from the point of view

of industry, then industry might well find it worthwhile to make up the entire amount. A

rational case for government funding must be made on the basis of the public-good nature of

research, excessive risk aversion, or some other economic factor, rather than simply a desire

to maintain the current, possibly arbitrary, level of funding.

David, Hall, and Toole (2000) specifically address the question of complementarity

and substitution. They survey 30 previous studies of the question, of which 21 found at least

some evidence of complementarity, seven found at least some evidence of substitutability,

but seven of which found mixed or insignificant results. Still, of the 30 studies, only five dealt

with government research grants (as opposed to direct-to-firm contracts or subsidies). Of

these, four found complementarity and one had mixed results. All of these are cross-industry
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or cross-country studies; none deal specifically with biomedical research or pharmaceuticals.

David and Hall (1999) construct a theoretical model of interaction between public

and private R&D which predicts that whenever the supply of inputs to the R&D process is

less than infinitely elastic (which is probably always true in the short run), increased public

spending on R&D, whether through grants, contracts, or subsidies, must necessarily raise

prices and “crowd out” private R&D spending — unless the public spending has stimulatory

effects that increase the demand for private R&D inputs by enough to compensate. This

is consistent with Goolsbee’s (1998) finding that a large portion of federal R&D spending

accrues to increased salaries for scientists and engineers rather than to more research.

3.2 Direct Subsidies of R&D

Most previous work related to the effect of government R&D spending focuses, not on govern-

ment research programs as such, but rather on the effect of government research contracts,

R&D subsidies, or tax credits awarded to for-profit firms.

Joglekar and Hamburg (1983, 1986) point out that the overall share of basic research

performed by private industry has fallen substantially during a period when the amount of

government-funded basic research has been increasing. Therefore, effectiveness of govern-

ment spending in stimulating private spending appears to be limited at best. That is, the

elasticity of private research spending with respect to government basic research spending is

certainly less than one. It may even be less than zero (which would indicate crowding-out),

but we cannot conclude this merely from the fact that private research constitutes a smaller

share of a larger total. Joglekar and Hamburg (1983) construct a theoretical model of an

industry with many risk-averse firms that divide their resources between appropriable (“ap-

plied”) and inappropriable (“basic”) research. They find that the unaided level of private

basic research is socially suboptimal, but government provision of additional basic research
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spending is counterproductive in the sense that it causes firms to reduce their spending on

basic research and increase spending on (appropriable) applied research. They find that if

the government provides matching funds for basic research, the firms do spend more on basic

research, but only slightly more. Joglekar and Hamburg (1986) also find, consistent with the

“free-rider” problem associated with basic research, that deviation from the optimal level of

basic research increases with the number of firms in the industry. Furthermore, they find

that, contrary to intuition, increasing firms’ risk aversion brings the industry closer to the

socially optimal level of basic research (thus decreasing the need for government support).

Levin and Reiss (1984) used National Science Foundation (NSF) data on R&D in

twenty manufacturing industries in three Census of Manufactures survey years (1963, 1967,

and 1972) to estimate both the effect of the ratio of government R&D to sales in an industry

on the private R&D-to-sales ratio and the elasticity of unit cost with respect to a firm’s R&D

expenditures. They find that an increase in the government-R&D-to-sales ratio is associated

with a small increase in the private-R&D-to-sales ratio in the same year and a small decrease

in the elasticity of unit cost in the same year. In their data, “government R&D” includes not

only government grants and subsidies, but also R&D done by private firms under government

contract, in which R&D is essentially a good purchased by the government or an essential

input to such a good. Also, since they use data available only at three five-year intervals,

they do not include any lagged effects at all. This is an important issue, since it is not

unreasonable to expect that R&D expenditures in one year might not have an effect until

several years into the future.

Mansfield and Switzer (1984) surveyed “senior R and D officials” of twenty-five firms

in the eastern United States and asked them how they would respond to a reduction in

the amount of government R&D funding going to their firms. Specifically, the officials were

asked to estimate the change in their firm’s company-financed energy-related R&D in each

of two years following a hypothetical 10% reduction and a hypothetical 10% increase in their
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firm’s receipts of energy-related government R&D funding. Not surprisingly, the officials

reported an average decrease in their own R&D following a decrease in federal funding (of

25 cents per $1.00 of federal cut) and an increase in company-financed R&D in the event of

an increase in federal funding (of 6 cents per $1.00 of federal increase).

Leyden and Link (1991) consider the question of crowding-out to be a closed one.

They title their article, “Why are governmental R&D and private R&D complements?”

and proceed to develop a theoretical model to explain the complementarity through some-

thing called “infratechnology” which “is used to facilitate the R&D process . . . [It] may be

embodied in such things as structures used for R&D activities, equipment, or pre-existing

knowledge used to understand, characterize, or interpret the R&D process.” In other words,

“infratechnology” is used to produce technology; the products of government-funded and

privately-funded R&D are complements in production in the sense that “infratechnology”

used for one can then be used for the other.

Irwin and Klenow (1996a, 1996b) examine in some detail an example of a U.S. gov-

ernment program specifically designed to use public funds to increase the level of R&D above

the (presumably suboptimal) equilibrium level and reduce duplication of research effort in

a specific industry. In 1987, fourteen U.S. semiconductor firms and the federal government

formed an R&D consortium called Sematech, to conduct research to improve semiconductor

manufacturing technology. The idea was for the government to fund half the cost of the

consortium to increase the level of R&D funding, and for firms to share their knowledge

with each other in order to reduce wasteful duplication of effort. The authors find that

under this regime, member firms did in fact reduce their total R&D expenditures (including

contributions to the consortium) relative to those of non-member semiconductor firms, con-

sistent with the hypothesis that firms can share costs that would otherwise be duplicated

across firms. Although three firms left the consortium at various times, the fact that the

remaining firms continued to fund Sematech after the U.S. government ended its subsidy
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in 1996 indicates that elimination of cost-duplication was believed sufficient to justify the

consortium even without subsidization.

Wallsten (2000) investigates the effects of the U.S. Small Business Innovation Research

Program (SBIR) program. The SBIR program is intended to fund research by small firms

that may face capital constraints that render them unable to exploit socially and privately

profitable research opportunities, and thereby to increase total R&D effort by small firms.

Wallsten finds that there is a positive correlation between SBIR grants and firm employment,

but his model cannot determine whether firms that receive grants have more researchers or

whether firms that have more researchers receive more grants. Furthermore, he finds that

both the number and magnitude of SBIR grants are negatively correlated with firm-financed

R&D. In a regression with firm-financed R&D expenditures as the dependent variable, his

estimate of the coefficient of SBIR research dollars is -0.82, indicating nearly dollar-for-dollar

crowding out of private expenditures by government grants. In fact, he finds that we cannot

reject the hypothesis that the true coefficient is -1.00, that is, that SBIR grants “crowd out”

firm R&D expenditures dollar-for-dollar.

Gans and Stern (2000) also investigate the effects of the SBIR program. They find

that the performance of projects funded by SBIR is highest in industries that also have

the highest level of venture capital financing. This may indicate that the SBIR program

is probably funding infra-marginal projects, perhaps because program administrators have

incentives to fund projects that appear likely to produce successful innovations and therefore

fund projects that also happen to have higher expected private returns. These projects, of

course, are those most likely to be able to attract funding from the private sector, precisely

because they have higher expected private returns. Thus, the incentives faced by SBIR

program administrators have the effect of minimizing the actual impact of the SBIR program

on R&D expenditures, since they induce funding decisions that selectively crowd out, rather

than complement, private investment.
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On a more optimistic (for proponents of R&D subsidies, that is) note, Lach (2000)

studies the effects of an R&D matching-fund subsidy program in Israel and reports that

a marginal dollar of government R&D funding increases private R&D expenditures by an

average of 41 cents. While this is less than half the “one-for-one” matching that is the nominal

requirement of the subsidy program, at least the subsidy does appear to complement rather

than crowd out private funding.

3.3 Government Research Grants

The studies cited above generally concentrate on effects of direct subsidies to firms or, in

some cases, R&D conducted by firms under contract to the federal government. In this paper,

the primary concern is how private research is affected by research conducted directly by

government agencies or funded by the government and conducted by non-profit organizations

such as universities. There are far fewer previous studies on this topic.

Levy and Terleckyj (1983) examine effects of both aggregate federal contract R&D

spending and aggregate federal basic research grants through organizations such as the Na-

tional Science Foundation and the National Institutes of Health on the levels of aggregate

privately-funded R&D. They find that while contract spending has a large and statistically

significant complementarity with privately-funded R&D (increasing contract R&D by $1.00

increases private R&D by 27 cents), the effect of grant R&D on private R&D has a regression

coefficient that is negative, small and statistically insignificant, indicating a lack of comple-

mentarity and possibly a small substitutability. While their data does not allow for precise

estimation of the lag structure, they did find a small positive effect of grant R&D after a lag

of three years.

Diamond (1999) finds a positive relationship between aggregate federal basic research

spending and aggregate private R&D spending in all subject areas reported by the National
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Science Foundation; however, he uses only first differences, does not control for any other

variables, and (since the unit of observation is research in a subject area) does not consider

that different levels of funding may lead to different outcomes in different fields of research.

In one of the few empirical attempts to measure the effects of the government funding

on R&D markets, Goolsbee (1998) pointed out that about two-thirds of R&D expenditures

go to wages for scientists and engineers. Because of the long training period required to

enter the research labor market, he notes that the supply of research scientists and engineers

is rather inelastic, so increases in government R&D spending will increase the salaries of

the researchers. This means that observed increases in expenditures reflect an increase not

only in the quantity but also in the price of innovation. Using wage data from the Current

Population Survey, Goolsbee estimates that a 10% increase in R&D spending results in

about a 3% increase in income for researchers. Depending on the distribution of federal

subsidies among scientific fields, as much as 30-50% of federal R&D spending may accrue to

increased salaries for scientists and engineers rather than to a higher quantity of research.

In addition, since privately- and publicly-funded researchers are hired in the same market,

federal research spending increases the price of R&D for private firms, thus directly crowding

out private R&D.

4 Research and Regulation in the Drug Industry

Research in the biomedical and pharmaceutical fields differs from research in other fields in

several important ways, First, pharmaceutical innovation in the U.S. is subject not only to the

regulations of the patent system, but also to the much more detailed and stringent regulations

of the Food and Drug Administration (FDA). In order to implement their regulations,

the FDA collects a lot of scientific data, which become public once a drug is approved.

Furthermore, biomedical research is one of the few fields in which private and government
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R&D expenditures are both large and of approximately the same order of magnitude, and

the government component consists almost exclusively of grants to researchers at non-profit

institutions (such as universities), as opposed to contract research or research aimed at a

product of which the government will be a consumer, as is the case, for example, in aerospace

and other defense-related industries.10

4.1 Regulation of Drug Research in the U.S.

Prior to 1962, drug development was regulated by the FDA according to the Food, Drug,

and Cosmetic Act of 1938.11 A firm wishing to market a new drug would submit a New

Drug Application (NDA) to the FDA. The FDA had a statutory maximum of 180 days to

evaluate the application and determine whether the application demonstrated that the drug

was safe for use according to the proposed labeling. If the FDA did not act to block a new

drug within 180 days of application, the firm could market the drug. The only requirement

was to demonstrate that, if used as directed, the drug would not harm the patient; there

was no requirement to prove to the satisfaction of the FDA that the drug was effective for

treating any particular ailment.12

In 1962 out of concerns regarding wasteful duplication of research effort, possible

collusion in violation of antitrust laws, and, finally, the approval of thalidomide in Europe

and Canada,13 Congress passed the 1962 Kefauver-Harris Amendments, which thoroughly

10 The R&E tax credit, described above (page 10), can be applied to corporate pharmaceutical R&D with
the usual limitations. There is also a more advantageous credit for so-called “Orphan Drugs” described in
Section 4.3 (p. 31) below.

11 This discussion is primarily based on Peltzman (1973) and Grabowski, Vernon, and Thomas (1978).
12 This is still, more or less, the requirement for nutritional supplements. Companies may market nu-

tritional supplements without proving efficacy as long as they do not claim in their marketing that the
supplements actually “treat, cure or prevent any disease.” Still, Dranove (1998) has noted that even the
requirement to prove safety, if too strictly enforced, can lead to an underinvestment in R&D of preventative
medicine, since it increases the liability risk and decreases the return involved in treating healthy individuals.

13 The role of thalidomide in the passage of the “proof-of-efficacy” requirement is somewhat ironic. As
Peltzman (1973) points out, the FDA did block introduction of thalidomide into the U.S. under the existing
“proof-of-safety” requirement. This would have made the “proof-of-efficacy” requirement irrelevant, even
though thalidomide was effective for some of its intended uses. Even more ironically, the story has now
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overhauled the 1938 Act and greatly increased the role of the FDA. The time limit for FDA

approval was removed, and manufacturers would thenceforth be required not only to prove

their new products safe for use, but also to prove that new drugs were effective in providing

treatment for the diseases for which they were marketed, according to a testing procedure

that itself had to be approved in advance by the FDA.

New drug development is now a thoroughly sequential process, which makes it partic-

ularly amenable to study.14 A pharmaceutical firm will often develop and screen thousands

of compounds in search of one with desired biochemical properties, for example, one that

inhibits a chemical process critical to some disease. When a particular compound shows

promise, it is tested for biochemical efficacy and possible toxicity first in vitro and then in

animals. Generally a patent is applied for at this stage, so the firm can establish exclusive

rights to the compound. Next, the firms files an Investigational New Drug Application (IND)

with the FDA. Unless the FDA acts to block the IND within 30 days, the firm may begin

human (clinical) testing.

Clinical trials are generally divided into three phases.15 During Phase I, the drug is

usually tested in a small number of healthy individuals (without the target disease) in order

to determine safe dosing levels, measure absorption rates, and rule out toxicity and severe

side effects. Phase I may last only a few weeks but is critical to rule out toxicity in humans

(Wiggins 1981a). The FDA may stop a Phase I trial at any time for reasons of safety (Center

come full circle: The FDA approved thalidomide in July 1998 for treatment of erythema nodosum leprosum
(leprosy), and promulgated extremely strict regulations governing its distribution, intended to make sure the
drug is not taken by pregnant women.

14 The drug development process, particularly once the FDA Approval process is started, is well-
documented in numerous sources, particularly The CDER Handbook published by the FDA Center for Drug
Evaluation and Research. The FDA also maintains a web page with information on how to file applica-
tions, at http://www.fda.gov/cder/regulatory/applications/default.htm. There is also an excellent
summary of the process in DiMasi, Hansen, Grabowski, and Lasagna (1991).

15 Actually, there is also a Phase VI, “post-marketing surveillance.” After a drug is approved by the FDA,
the manufacturer is required both to track “adverse drug reactions” (ADRs) and to report them to the
FDA. Occasionally, the FDA will force a firm to withdraw a drug from the market if ADRs are too frequent
and/or too severe. Sometimes, the decision to withdraw a previously approved drug may be influenced by
the subsequent approval of a drug that is equally (or more) effective but has fewer or less severe known side
effects or reported ADRs.

25



for Drug Evaluation and Research, (1998), p. 8).

During Phase II, the drug is tested for efficacy and short-term side effects in several

hundred patients with the target disease. These tests can run several years and cost millions

of dollars (Wiggins 1981a; DiMasi et al. 1991). If Phase II is successful, the drug enters

Phase III, in which it is tested in a large number of patients (generally a few thousand) to

obtain more detailed efficacy results, to determine the frequency and severity of side effects,

and in particular to detect more unusual side effects that would not likely be detected in

the smaller samples used for Phases I and II. Concurrent with Phases II and III, the firm

generally conducts long-term animal toxicity tests at several times the equivalent human

dosage to rule out side effects that might occur as a result of long-term use of the drug. This

is obviously particularly important for drugs intended to treat chronic illnesses.

After the completion of Phase III, the company files a New Drug Application (NDA)

with the FDA, formally requesting approval to market the drug for a particular use. The

FDA then either requests more tests or approves or denies the application. If the FDA

decides to approve the application, there is generally an extensive negotiation between the

firm and the FDA over the precise content and wording of the packaging, the “label” (i.e.,

the information sheet inserted into the box that the drug is sold in), and the information that

the company will provide to physicians and patients when marketing the drug. Every single

piece of information and every health claim made in the course of marketing the drug must

be approved in advance by the FDA. Furthermore, if the firm wishes to market the drug for

another “indication” (i.e., another use for the drug, e.g., to treat a different disease), it must

submit a new NDA. While it is perfectly legal for a physician to prescribe an approved drug

for any use, the manufacturer may market the drug only for the FDA-approved use.
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4.2 Effects of the 1962 Drug Amendments

Needless to say, the post-1962 drug approval process turned out to be extremely costly

both in time and money. DiMasi, Hansen, Grabowski, and Lasagna (1991) surveyed twelve

U.S.-owned pharmaceutical firms and estimated that the entire process took an average

of 68.6 months from the beginning of Phase I clinical testing to submission of the NDA,

and a total 98.9 months until approval of the NDA. That is, a typical drug spends over

eight years in the testing-and-approval process, including over two and a half years waiting

for FDA approval after testing is complete. In addition, DiMasi et al. estimate that the

discounted present value of the expected cost to drug companies of the entire testing-and-

approval process is over $17.3 billion (constant 1987 dollars16). Note that this is the cost of

the clinical testing and regulatory process only, and does not include the costs of R&D to

develop the compound in the first place — and it is the average cost per drug approved, not

per drug tested, considering an estimate that only 23% of drugs that enter human trials are

eventually approved. In fact, Dranove (1991) conjectures that, including both direct costs

incurred by drug companies and the costs of basic research performed at universities and

funded by the government, the “full cost” of developing a new drug is probably double the

estimate of DiMasi et al., which includes only direct costs.

There is no disputing that the costs of bringing a drug to market are high, and in-

creased significantly after the passage of the 1962 Amendments. Based on only the first seven

years of post-Amendments data, Baily (1972) estimated that the expected (steady-state) an-

nual development costs had increased by 136%, and the number of new drug introductions

had decreased to about a third of its previous level. His figures correspond to an increase of

over 500% in the cost per new drug.

In a much more detailed study, Peltzman (1973) found that the increased compliance

16 Constant dollars according to the GDP implicit price deflator, not the BRDPI used for calculations in
this paper.
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costs were associated with a significant reduction in the rate of innovation, as measured by

new drug introductions. For example, in the twelve years ending in 1962, there were an

average of 41.5 new chemical entities (NCEs)17 introduced per year, and that number was

trending slightly upwards. In the eight years after 1963, the average was 16.1 NCEs per

year, and trending downwards. This may not necessarily be a bad thing — recall that the

purpose of the amendments was to prevent ineffective drugs from reaching the market, so

we would expect that the number of drugs reaching the market would drop. The question is

whether there is any evidence that the reduction is caused by the elimination of ineffective

drugs, rather than by the increased cost of bringing effective drugs to market. Peltzman also

demonstrates that there is no significant difference in the demand for drugs based on whether

they are introduced before or after 1962, either for individual buyers or for (presumably

better-informed) hospital buyers; in fact, hospitals even increase their demand for pre-1962

drugs as those drugs stay on the market longer and more information about their efficacy

becomes available. This seems to imply that average efficacy of drugs did not increase

after the proof-of-efficacy requirement was imposed. Even with generous assumptions used

to calculate the social savings from reducing wasteful spending on ineffective drugs, the

foregone benefits due to reduced innovation are several times higher than an upper bound

on waste avoided.

Grabowski, Vernon, and Thomas (1978) also try to measure the effect of the 1962

Amendments on the rate of new drug introductions, but instead of comparing the periods

before and after 1962, they compare drug introductions in the U.S. in 1960-1974 to those in

the U.K. in the same period. The reason for this is to allow for the possibility that perhaps

some other factor besides the 1962 regulations was responsible for the decline in U.S. drug

introductions, one that might have similarly affected U.K. drug introductions. The authors

17 “New chemical entities” (NCEs) are chemical compounds being introduced for the first time as drugs.
There are other new drug introductions (i.e., NDA approvals), including combinations of existing compounds,
and existing compounds approved for treating additional diseases.
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mention several possible alternative explanations, including a “depletion of research opportu-

nities” due to rapid drug development in the recent past, the thalidomide episode’s possible

effect on the public’s demand for new drugs and firms’ willingness to supply in the face of

liability risk, and non-regulatory reasons for higher development costs. The authors do not

mention any reason they have to believe that any of these factors suddenly appeared in 1962,

though they seem to believe these factors might explain the sudden drop in U.S. drug intro-

ductions the following year. Their data, however, show that U.S. drug introductions slowed

considerably relative to U.K. introductions, a fact which they conclude can be explained

only by a change in the U.S. regulatory regime. This explanation is further supported by

the existence of strong complementarities in production of drugs in both countries.

Wiggins (1981b) moves beyond the 1962 Amendments to try to examine the effects of

regulation on drug innovation in a more general way. He notes that the FDA has six different

divisions, each of which evaluates drugs in different therapeutic categories, and the divisions

have different standards for judging efficacy. Thus, it would be reasonable to expect that we

could find measures of “regulatory stringency” that would show different effects for different

types of drugs. For each therapeutic category, he uses the average NDA approval time as a

“regulatory stringency” variable. He then combines this with data from the Pharmaceutical

Manufacturers’ Association (PMA, since renamed Pharmaceutical Research and Manufac-

turers of America, i.e., PhRMA) on R&D expenditure by therapeutic category. There is,

of course, not a perfect correspondence between the PMA/PhRMA categories (which corre-

spond to five-digit SIC codes) and the FDA drug divisions, but FDA data are available at

the level of individual drugs and PMA/PhRMA data are not. Wiggins sorts the drugs into

PMA/PhRMA categories and relies on their being roughly correlated with FDA divisions.

He then estimates the number of NCEs per category per year as a function of lagged R&D

expenditure and lagged regulatory stringency in that category. He finds that a reduction in

average delay time (and other stringencies associated with delay time) of six months would

29



result in the long run in the introduction of about one additional drug per therapeutic class

per year. Furthermore, his findings are robust to the specification of the lag structure, and

the sixth lag of regulatory stringency and the fifth lag of firm R&D expenditures fully char-

acterize the lag structure. In fact, his final estimates are based only on these particular

lagged values.

In a subsequent paper, Wiggins (1983) estimates the impact of regulatory stringency

on firm R&D expenditures. He points out that since the 1962 Amendments had an immediate

negative effect on drug approvals, one might expect them to have had an immediate negative

effect on firms’ research expenditures as well. He finds, however, that the effect on R&D

expenditures was experienced over several years, and he attributes this to the difficulty firms

faced in predicting how the FDA would implement the new legislation. For example, prior to

1962 a firm might have relied on the judgment of a panel of “expert” physicians to determine

whether a drug was sufficiently effective to market. When the amendments were passed,

there was no way to anticipate that the FDA would not merely examine the testimony of

the applicant firm’s experts or appoint their own panel of experts to provide independent

testimony. The elaborate clinical testing procedure the FDA adopted to determine efficacy

was not necessarily foreseeable. Furthermore, it was clearly impossible to tell how strict

the FDA would be in evaluating claims of efficacy, regardless of what procedure they used

for evaluation. Wiggins estimates a regression equation for research expenditures based on

current sales and lagged regulatory stringency. He uses a Chow test to reject the hypothesis

that the coefficients for regulatory stringency are the same for both the 1960s and 1970s; then

he estimates each set of coefficients separately. He finds that the coefficients for regulatory

stringency are both small and insignificant for the 1960s (i.e., the first seven years post-

Amendments), but large, significant, and negative for lags two through five in the 1970s.

In particular, he finds that a one-month increase in average delay in NDA approval for a

therapeutic category induces no reduction in R&D expenditures in the following year but
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does induce a reduction of $486,000 in the second year, $733,000 in the third year, and so on,

for a total reduction of over $2.6 million by the fifth year (standard error of $0.47 million).

It is estimated that eliminating the increase in regulatory stringency from pre-1962 levels

would increase total R&D expenditures by 24% from its actual level.

Thomas (1990) finds that almost all the reduction in NCE introductions after 1962

is accounted for by elimination of small firms from the new drug market. This is attributed

to the increase in the cost of obtaining NDA approval. Although U.S. firms suffered a severe

productivity reduction, elimination of competition from small firms allowed surviving firms

to increase prices, and possibly even profits, above what they would have been otherwise

able to achieve.

4.3 The Orphan Drug Act of 1983

There have been some significant changes to drug regulations since 1962, though nothing on

the scale of the Kefauver-Harris Amendments. One of the problems with the high cost of

bringing drugs to market is the often insufficient incentive to invest in research to cure rare

diseases, since it would be difficult to recover the cost of such research by selling a drug to

only a few people. One attempt to mitigate this problem is the Orphan Drug Act (ODA),

which became law in 1983.18 This act defines as an “orphan drug” any drug intended to treat

a disease that afflicts fewer than 200,000 persons in the U.S., or that otherwise afflicts so few

people that expected U.S. sales will not cover expected R&D costs. The FDA designates

drugs as meeting these requirements upon application from a firm that wishes eventually to

introduce the drug.

The ODA provides two major incentives for development of orphan drugs. First, it

establishes a seven-year period of exclusive marketing of the designated drug for the “orphan”

18 This discussion is primarily based on Reaves (1995).
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indication, independent of the patent status of the drug. This increases the likelihood that

a firm will find it profitable to file an NDA for an additional “indication” (i.e., an additional

use) of an already-existing compound even if the compound is in the public domain or

there is little time left until the patent expires.19 The marketing exclusivity pertains to a

particular substance for a particular use — that is, if a drug designated an “orphan drug”

is later approved for use, the manufacturer will have the exclusive right to market that

particular drug for the particular approved indication for seven years, even if that period

extends beyond the expiration date of the firm’s patent on that drug or if the drug was

in the public domain (i.e., not patentable) to start with. Second, the ODA provides firms

developing orphan drugs with a 50% tax credit for expenses incurred for clinical trials after

a drug receives the orphan drug designation. Since firms generally apply for and receive

orphan drug status near the beginning of Phase I, this amounts to the federal government’s

paying a substantial portion of the cost of clinical trials. Firms may also apply to the FDA

for grants from a limited budget to conduct clinical trials for already-designated orphan

drugs.

Reaves (1995) reports that in the decade prior to enactment of the ODA, only ten

drugs that would have qualified as orphan drugs under ODA were approved for marketing

by the FDA. In the first decade after ODA, over 400 substances received the orphan drug

designation, and over 100 designated orphan drugs were approved. Reaves also finds that

smaller firms were more likely to increase orphan drug efforts than large firms.

19 If a firm has received an “orphan drug designation” for a substance, it is illegal for other firms to
market that substance for that specific use. In other words, if a firm finds that aspirin or table salt cures
some rare disease, it can file an NDA. If approved, the firm cannot prevent others from selling aspirin or
table salt, but it can prevent them from advertising that their aspirin or table salt cures the rare disease for
the seven-year “exclusive marketing” period. In addition, the same or a different firm may apply for orphan
drug designation and the exclusive marketing that goes with it for the same substance to treat a different
disease, not to mention a different drug to treat the same disease. Originally, the ODA applied only to these
non-patentable drugs; in 1985 it was amended to apply to patented drugs as well.

32



4.4 The 1984 Waxman-Hatch Act

One of the main drawbacks of the 1962 Amendments was the increase in the length of time

from development of a new drug to its introduction to the marketplace after FDA approval.

This is a drawback from two points of view. On the “demand” side, consumers are deprived

of potentially useful drugs for an extended periods, as noted by Peltzman (1973). On the

“supply” side, this reduces the incentive for innovation, as producers are deprived of a

significant amount of patent protection. Firms apply for patents after the compound is first

synthesized but before beginning clinical (or even animal) trials. When patents are valid

for a fixed term of 17 years,20 adding time to the FDA review process reduces the period

of exclusive marketing by an equal amount. This in turn reduces the effective length of the

patent and thus the value of the innovation to the producer. According to Grabowski and

Vernon (1986), the average effective patent term for new drugs in 1984 was about half the

statutory term of 17 years. A decade later, Ward and Dranove (1995) reported that the

delay between patent to NDA approval in their sample ranges from four to twelve years.

A countervailing problem is that once the patent expires, in principle anyone ought

to be able to make and sell the drug. (These post-patent drugs made by different firms

are called “generic” drugs.) Indeed, the implied contract of the patent system is the grant

of a limited-time monopoly in exchange for full disclosure of the innovation to enable low-

cost imitation after the monopoly expires. However, unlike the information contained in

patents, evidence of safety and efficacy submitted in support of an NDA is, under the 1962

Amendments, considered a trade secret and may not be legally revealed by the FDA to the

public. Furthermore, since approval of an NDA is approval for a specific firm to market

a specific drug, the same chemical compound marketed by a different firm is, for purposes

20 This is the case for all patents granted between 1861 and 1995. In 1995, to meet the requirements of
the General Agreement on Tariffs and Trade (GATT), Congress changed the patent term from 17 years from
the date of issuance to 20 years from the date of filing (i.e., application). In 1999, Congress provided for
adjustments to the expiration date to compensate inventors for delays in the application procedure.
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of regulation, a different drug. The result is that, not only would a subsequent producer

have to submit a new NDA, but that producer would have to duplicate the testing, possibly

including the entire clinical trials process (if the results had not been published) in order to

establish the safety and efficacy of drug chemically identical to one already on the market.

This replication is clearly socially wasteful, both in time and resources.

The second major change since 1962 was the Drug Price Competition and Patent

Term Restoration Act of 1984, also known as the Waxman-Hatch Act, which addressed both

these issues. First, the Act increased the effective patent life of approved drugs by an amount

equal to the time spent by the FDA in reviewing the application plus half the time spent

in clinical trials, up to a maximum of five years beyond the normal patent expiration date

and a maximum of 14 years of effective patent life.21 Second, the Act eliminated the need

for duplicate testing by requiring imitators (after patent expiration) to prove only that a

“generic” drug was bioequivalent to the previously approved drug. Grabowski and Vernon

(1986, 1996) found that most brand-name drugs lost half to two-thirds of their market within

two years of patent expiration and estimated that, while the Act substantially increased

patent protection and lowered post-patent entry barriers, the net effect on the Net Present

Value (NPV) of innovators was about even, with consumers benefiting from lower prices

resulting from the introduction of more generic drugs.

4.5 Biomedical Research: Government Grants and Private R&D

Despite the obvious importance of research to the pharmaceutical industry, the significant

roles of both the federal government and private firms in conducting this research and the

abundant treatment of research issues in general and of the pharmaceutical industry in par-

ticular, it is surprising how little work has been done on the interaction between federal

21 Note that the maximum “guaranteed” effective patent life is less than the statutory patent term.
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and private research in this field. Fewer of these studies address the main issue in this pa-

per: whether publicly-funded research stimulates (complements) or crowds out (substitutes)

private research.22

Lichtenberg (1999a) examines federal biomedical research grants at the project level.

His is one of the few studies that do not take government funding to be exogenous; on the

contrary, the goal of the study is to predict government funding as a function of disease

prevalence and severity. He finds that federal expenditures on research related to specific

diseases is strongly positively correlated with the total number of life-years lost to those

diseases before age 65, and federal expenditures on research related to chronic conditions

is strongly positively correlated with the number of people whose activities are limited by

those conditions.

Cockburn and Henderson (forthcoming) survey a number of studies of the effects

of public research on the pharmaceutical industry. They delineate several plausible routes

by which publicly funded basic medical research can help drug companies and increase the

productivity of the pharmaceutical industry. They conclude that the overall rate of return

from public funding of biomedical research is very high, perhaps as high as 30%. This not

out of line with other estimates, though it is lower than estimates derived by Murphy and

Topel (1999).

Carreón-Rodŕıguez (1998) applies distributed-lag regressions to estimate the effect

of total expenditures of the NIH on total expenditures of U.S. drug companies as reported

by PhRMA. Using no other variables and only aggregate spending figures, he finds that

22 It is worth noting that pharmaceutical and biotech executives and their trade groups generally view
public funding of biomedical research as a good thing, and Pharmaceutical Research and Manufacturers of
America (PhRMA) actively lobbies for more of it (Pien 1999; Mullen 2000; PhRMA 2000). This would
seem to imply that it is implicitly a subsidy of costs that would otherwise have to be incurred by drug and
biotech firms. However, such a subsidy is potentially consistent with either substitution or complementarity.
If publicly-funded research reduces the need for the private sector to do its own basic research, then public
research will crowd out private research, and we will observe substitution. On the other hand, if public
funding of basic research provides new opportunities for applied research, then public research will stimulate
private research and we will observe complementarity. To further complicate matters, it is possible for both
effects to occur simultaneously.
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coefficients are significant at the 5% level up to the 14th-order lag for the raw data, the

12th-order lag for the de-trended series, and the fourth-order lag for the first differences.

The study that comes closest in intent to the present one is Ward and Dranove

(1995). They treat pharmaceutical innovation as a flow of information through three stages:

government-funded basic research, publication in medical journals, and industry-funded drug

development. Their measure of government funding is the budget of the NIH, broken down

into five categories based on the constituent institutes of the NIH. For publication, the

measure is the number of articles listed in the MEDLINE database that reference drug

therapy and can be categorized by disease. For industry R&D, they use the annual survey

of the Pharmaceutical Manufacturers’ Association (PMA) (since renamed Pharmaceutical

Research and Manufacturers of America, i.e., PhRMA), which reports industry R&D ex-

penditures broken down into seven therapeutic classes corresponding to five-digit SIC codes.

This is the same data set used by Wiggins (1981b) and by the present author (though, of

course, more recent papers use more recent data). Ward and Dranove find that NIH fund-

ing for a disease category is a positive predictor of medical publication in that category

with near-unit elasticity: the estimated total effect of a 1% increase in NIH funding is a

0.95% increase in publications in the same category. In turn, industry R&D expenditures

respond strongly to the number of journal articles; a 1% increase in articles corresponds to

a 0.22-0.36% increase in expenditures in the same category. In addition, and more relevant

to our interest here, Ward and Dranove report results of regressions of the logarithms of

industry R&D expenditures on the logarithms of NIH expenditures (lagged 0-7 years) for

the five PMA/PhRMA categories that can be linked to NIH institutes. A 1% increase in

own-category NIH spending corresponds to a cumulative increase in PMA/PhRMA spend-

ing of 0.57-0.76% over seven years. Five of the seven lag coefficients are positive, but only

the sixth-order lag is significant at the 5% level. When logarithms of NIH expenditures on

other categories are included (also lagged 0-7 years), nine of the sixteen lag coefficients are
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significant at the 10% level or better, and coefficients on four of the coefficients are negative

(lags 2 and 3 of NIH own-category expenditures and lags 1 and 6 of NIH other-category

expenditures).

5 From Research to Marketplace

Although the empirical results discussed in Section 8 show that there are correlations between

private-sector and lagged government biomedical R&D expenditures, it would be useful to

have a better picture of the pathway through which government-funded research might lead

to private R&D spending and eventually to introduction of new products. In this chapter, we

will review some existing qualitative studies linking public research spending to the private

R&D process, as well as present as a case study the discovery of the cyclooxygenase-2

(“COX-2”) enzyme and the subsequent development of COX-2 inhibitors for the treatment

of rheumatoid arthritis and other inflammatory and COX-2-mediated diseases.

5.1 Previous Studies

It is well established that private-sector science-based firms sponsor academic research, in-

cluding basic research in areas of interest to the firm. Blumenthal et al. (1996) surveyed

over 200 firms in the life sciences and found that almost 90% of such firms hire academics

on a consulting basis, almost 60% sponsor academic research projects directly, and over a

third support students with grants, fellowships, or scholarships. In the case of pharmaceuti-

cal firms, some of this support includes clinical trials conducted by researchers in academic

hospitals on behalf of those firms, but 98% of such firms in the sample sponsor other research

as well. Blumenthal et al. estimate that firms provided about $1.5 billion, or about 11.7%

of the funds supporting academic research in the life sciences in 1994.
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As noted earlier, there are several studies that link patents to basic science based on

the scientific articles cited on patent applications. For example, Narin and Olivastro (1992)

found that pharmaceutical patents cited more science articles than patents in any other

field, averaging 4.5 articles per patent. In a subsequent study, Narin, Hamilton, and Olivas-

tro (1997) found that a significant and increasing fraction of patents cite government-funded

scientific research, including research conducted at both government and academic laborato-

ries. For example, of all scientific papers cited in U.S. patent applications in 1993-1994, 73%

were authored at academic or government institutions, and a substantial majority of the aca-

demic papers acknowledged a government funding source. More recently, McMillan, Narin,

and Deeds (2000) found that the connection between public science and the biotechnology

industry was even stronger than for the traditional pharmaceutical industry.23

Although “basic science” projects are, by definition, undertaken without a specific

commercial product in mind, sponsors of basic research often have as a general goal the

development of specific types of knowledge and possibly specific social and economic out-

comes. Managers of government agencies often have specific guidelines, mission statements,

and goals, not to mention incentives to demonstrate that their programs are worthwhile and

should be funded in the future.

This seems to have been the motivation for a study done by the staff of the NIH itself,

entitled “NIH Contributions to Pharmaceutical Development: Case study analysis of the top-

selling drugs” (National Institutes of Health 2000). This report points out that NIH funding

plays a significant role in the training of biomedical scientists who later work in industry (as

well as in academia), since research grants are often used by professors to fund the tuition and

23 The distinction between the biotechnology industry and the pharmaceutical industry is arbitrary and
imprecise. Firms regarded as “biotech firms” are typically small, new firms pursuing cutting-edge treatments,
often with genetically-engineered drugs. Firms regarded as “traditional” pharmaceutical firms are typically
large, older, and pursue treatments based on biochemically-derived drugs. Some people distinguish between
the two based on research techniques, but many firms use both techniques. Some prefer to distinguish based
on firm size, but there are large biotech firms (Amgen) and small pharmaceutical firms (Purdue Pharma LP).
One of the more common practices is to distinguish based on the molecular weight of the firm’s product. Of
course, some firms produce products with both high and low molecular weights.
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stipends of graduate students who are their research assistants. It then goes on to summarize

the major events in the development of the “top five” drugs, as measured by worldwide sales

in 1994. The five drugs are: Vasotec (for treatment of hypertension), Capoten (for treatment

of hypertension), Zovirax (an antiviral agent), Prozac (an antidepressant), and Zantac (an

anti-ulcer drug). In each case, early discoveries were made predominantly by academic

researchers (who are mostly but not exclusively government-funded) and later discoveries

were made predominantly by industry researchers. This pattern is again reflected in the

development of COX-2 inhibitors.

5.2 Development of COX-2 Inhibitors

In this section, we will trace the development of an important new class of drugs developed

over a decade or so and introduced to the market in 1999, with an emphasis on reviewing

the sources of funding for critical pieces of research. These drugs represent a major ad-

vance in the treatment of rheumatoid arthritis and other inflammatory ailments, as they

reduce pain and fever as well as inflammation, and may also reduce the likelihood of colo-

rectal cancer. Essentially, these drugs have almost all the therapeutic effects of traditional

“non-steroidal anti-inflammatory drugs” (NSAIDs) such as aspirin, ibuprofen, naproxen, and

indomethacin, but with out the gastrointestinal side effects often experienced by long-term

users of traditional NSAIDs.24

The term “non-steroidal anti-inflammatory drugs” refers to a long-established class

of medications that reduce inflammation, pain, and fever. The term “non-steroidal” distin-

guishes these drugs from anti-inflammatory corticosteroids, which are much more powerful

anti-inflammatory agents but have much more serious side effects. Common NSAIDs include

aspirin and related salicylates, ibuprofen (sold, for example under trade names such as Advil

24 In addition to specific references cited herein, this section is based on Simmons, Wagner, and Westover
(2000), Vane and Botting (1998), DeWitt (1999) and conversations with Mr. Sumeet Sud, formerly of Merck
& Co. and Mr. Reuben Ehrlich, formerly of G. D. Searle & Co.
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and Motrin), naproxen (sold as Naprelan and Aleve), and indomethacin (sold as Indocin).

Some common NSAIDs and COX-2 inhibitors are illustrated in Figure 1.

This class of drugs has been well-known for centuries. The first published “clinical

trial” of an NSAID was in 1763, when Rev. Edward Stone read a report to the Royal Society

on the use of willow bark extract to treat fever (Stone 1763). In the nineteenth century,

it was discovered that the active ingredient in willow bark was salicylic acid, which was

chemically synthesized in 1860 and subsequently commercialized as a treatment for fever

and rheumatism (Vane and Botting 1998). Salicylic acid was effective, but had the side

effect of upsetting the stomach and causing ulcers. In 1898, believing that the acidity of

the compound was responsible for its ulcerative effect, Felix Hoffman of Bayer synthesized

a compound in which the “acid” portion of the molecule was replaced with an acetyl group.

This compound, acetylsalicylate, was introduced by Bayer in 1899 as aspirin (Dreser 1899). It

turned out to have the same ulcerative side effects as salicylic acid, though to a substantially

lesser degree.

By the 1960s, several new drugs with similar therapeutic effects had been discovered,

including indomethacin, ibuprofen, and naproxen. However, despite the fact that these

kinds of drugs had been in use for over two centuries, and not only had the same therapeutic

effects but also the same side effects, the mechanism by which these drugs worked remained

unknown until 1971, when the British researchers John R. Vane, J. B. Smith, and A. L.

Willis discovered that aspirin and other NSAIDs block prostaglandin synthesis by inhibiting

the enzyme Cyclooxygenase (COX), also known as Prostaglandin G/H Synthase (PGHS)

(Vane 1971; Smith and Willis 1971), a discovery for which Vane shared the 1982 Nobel Prize

in Medicine and was knighted in 1984.25

The initial discovery took place when Vane, Smith, and Willis were all in the Depart-

25 Vane’s paper and Smith and Willis’ paper appeared back-to-back in the journal Nature New Biology.
They were, respectively, the fourth and twentieth most-cited 1971 papers in the Institute for Scientific
Information’s Science Citation Index (Garfield 1973).
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Figure 1: Chemical diagrams of important COX inhibitors and related drugs. Rofecoxib and Cele-
coxib are selective COX-2 inhibitors developed by Merck and Searle, respectively. Indomethacin,
Ibuprofen, and Diclofenac are common non-selective COX inhibitors, known as Non-Steroidal
Anti-Inflamatory Drugs (NSAIDs). Acetominophen has minimal anti-inflammatory properties, but
is otherwise clinically similar to NSAIDs. Aspirin was the first large-scale commercially-produced
NSAID.

Graphic from Figure 1 of Simmons, Daniel L; Wagner, David; and Westover, Kenneth,
“Nonsteroidal Anti-Inflammatory Drugs, Acetaminophen, Cyclooxygenase 2, and Fever,” Clinical

Infectious Disease 31(Suppl 5):S211–8 (2000). ( c© 2000 by the Infectious Diseases Society of
America. All rights reserved. Published by The University of Chicago Press. Used with permission.)
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ment of Pharmacology at the Royal College of Surgeons of England. Their work was funded

by the Medical Research Council, and British Government organization roughly equivalent to

the National Institutes of Health in the U.S. Vane also received funding from The Wellcome

Trust, a private charitable foundation.26 In 1973, shortly after making the critical discovery

and in the midst of further work to refine the understanding of the relevant mechanisms,

Vane left the Royal College of Surgeons and, taking a core group of colleagues with him,

became Group Research and Development Director at The Wellcome Foundation,27 where

he continued his work in the private sector. It was at Wellcome, for example, that he and his

group discovered prostacyclin, a prostaglandin produced in the walls of blood vessels that

acts as a vasodilator and inhibits platelet aggregation. In 1986, Sir John left Wellcome and

formed the William Harvey Research Institute, which is part of St Bartholomew’s School of

Medicine of the University of London. The University is funded by the British government,

and the Institute also takes on contract research from clients through its affiliate, William

Harvey Research Limited.

Vane’s discovery helped explain why the same drugs both reduce inflammation and

upset the gastro-intestinal system, since prostaglandin synthesis is involved in both processes.

However, it gave no basis for finding a drug that would have the therapeutic effects without

the adverse side effects. This research “log-jam” was not broken for almost two decades,

until three university labs independently — and approximately simultaneously — discovered

that there are actually two forms of cyclooxygenase (DeWitt 1999). The previously-known

(“constitutive”) form is involved in the workings of the digestive tract, and is now known as

26 According to the Trust’s web page, at http://www.wellcome.ac.uk/en/1/awt.html, it is “an inde-
pendent research-funding charity, established under the will of Sir Henry Wellcome in 1936 . . . funded from
a private endowment.” The Trust appears to have been, at the time of Vane’s work, the sole shareholder
in The Wellcome Foundation, the successor corporation to the company founded by Henry Wellcome. The
Trust diversified its holdings in the 1980s and 1990s, eventually selling the company to Glaxo to form Glaxo
Wellcome, which merged with SmithKline Beecham in 2000 to become GlaxoSmithKline. The Wellcome
Trust claims to have no continuing special relationship with that or any other pharmaceutical company.

27 Despite its name, The Wellcome Foundation was a private pharmaceutical company — the corporate
successor to Burroughs Wellcome & Co. — not a charitable “foundation.” The “foundation” bearing the
founder’s name was and is known as The Wellcome Trust (see above).
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cyclooxygenase-1, or COX-1. The second, (“inducible”) form is involved in the inflammatory

process, and is known as cyclooxygenase-2, or COX-2.28

The three labs that discovered what is now known as COX-2 were all university labs

funded by U.S. government grants and private foundations. The first group, led by Daniel L.

Simmons of Brigham Young University, discovered a gene that produced COX-2 in murine

fibroblasts (Xie et al. 1991). This work was funded by grant from the National Institutes of

Health (NIH Grant CA42580) and a grant from the Bireley Foundation. (Simmons actually

made the initial breakthrough while a post-doctoral fellow at Harvard, supported first by

an NIH fellowship and subsequently by a fellowship from the Leukemia Society of America

(Simmons et al. 1989).)

The second group, led by Professor Donald A. Young at the University of Rochester,

was funded by two NIH Grants (DK16177 and CA47650) and the team included M. Kerry

O’Banion, a recipient of a cancer research fellowship from the J. P. Wilmot Foundation,

and Virginia Winn, a medical student at the University of Rochester (O’Banion et al. 1991;

O’Banion et al. 1992). The University of Rochester applied for and was granted a patent

on this discovery, which has become the basis for a lawsuit against the maker of the COX-

2 inhibitor drug Celebrex. The university’s patent specifically states that the work was

conducted with government support, lists one of the grant numbers, and states that, “The

government has certain rights in the invention.”29

28 Recently, some researchers has speculated that there may be a third form of cyclooxygenase, which has
role in producing fever, and Simmon’s group at BYU has isolated a third form. See, for example, Botting
(2000), Simmons et al. (1999), and Willoughby et al. (2000) and ?).

29

The initial application for this patent was filed in 1992. This initial application and four subsequent
applications were abandoned and replaced, with the final application being submitted June 7, 1995. This
was prior to the grant dates, but after the filing dates, of the patents Searle and Merck received for Celebrex
and Vioxx, respectively (see page 44). The Rochester patent (number 6,048,850) was finally approved on
April 11, 2000 — over a year after Celebrex was introduced the the market, and almost a year after Vioxx
was introduced. The Celebrex and Vioxx patents claim only the invention of specific drugs; the Rochester
patent claims to cover the concept of selectively inhibiting COX-2. Within hours of receiving the patent, the
University of Rochester filed a patent infringement suit against both Searle, which developed Celebrex and
Pfizer, which was marketing it, claiming that the Celebrex patents were invalid and that Celebrex infringed
the University of Rochester’s patent on COX-2 inhibition. A federal court invalidated the patent, and as of
this writing (Nov. 2003), the appeal is still pending. In an amicus brief in support of Rochester, two other
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The third group, led by Professor Harvey R. Herschman at the University of Califor-

nia, Los Angeles, was funded by a Department of Energy research contract (DE FC03 87ER

60615) and three separate NIH grants: a traditional research grant to Professor Herschman

(GM24797), an “NIH Health Physician Scientist Award” to Dean A. Kujubu, and an NIH

predoctoral “Training Grant” to Brian C. Varnum, who received his Ph.D. in 1989 and went

on to use his NIH-funded training in an industry job at Amgen, a biotechnology firm and

member of PhRMA (Kujubu et al. 1991).

After these discoveries were made, at least five major pharmaceutical firms — Merck

& Co., G. D. Searle & Co., Bristol-Myers Squibb, Novartis, and Johnson & Johnson —

began privately-funded efforts to develop drugs that would selectively inhibit COX-2 without

affecting the beneficial activity of COX-1. By 1994, both G. D. Searle & Co. and Merck &

Co. had started to file for patents to protect compounds that were candidate drugs.

Searle’s drug, now known as celecoxib (or by its brand name Celebrex), is protected

by U.S. Patents 5,563,165 (issued October 8, 1996), 5,466,823 (issued November 14, 1995),

and 5,760,068 (issued June 2, 1998), and was introduced to the research community by

(Penning et al. 1997). The drug was approved by the FDA on December 31, 1998, and is

currently marketed by Pfizer under an agreement with Pharmacia, which acquired Searle in

2000.

Merck’s drug, now known as rofecoxib (or by its brand name Vioxx), was approved less

than six months later on May 20, 1999. It is protected by U.S. Patents 5,474,995 (December

12, 1995) and 5,691,374 (November 25, 1997) and was introduced to the research community

by (Prasit and Riendeau 1997). The Merck Vioxx team later published an explanation

of their research process (Prasit et al. 1999), which described the design of the rofecoxib

molecule as a derivative of DuP 697 (see below), with changes aimed at improving oral

universities claimed that “without basic research from the universities, the private sector will be unable to
develop pharmaceutical compounds for the public.”
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absorption while preserving COX-2 selectivity, especially as compared with indomethacin.

Ironically, it turns out that before COX-2 was discovered, two other companies had

NSAIDs already in development, which are now known to be selective COX-2 inhibitors

(DeWitt 1999). E. I. du Pont de Nemours & Co. had a compound known as DuP 697,

which the developers noted was effective against inflammation but produced no intestinal

or gastric ulcers in animal studies (Gans et al. 1990). Likewise, Taisho Pharmaceuticals

Co. in Japan developed a compound known as NS-398, which they claimed was potent

against inflammation, pain, and fever, but produced “minimal stomach lesions” (Futaki et al.

1993). For some reason, development of both these compounds was discontinued, although

the structure of DuP 697 became the starting point for the development of celecoxib and

rofecoxib, which were eventually brought to market.

The funding of major steps in the development of COX-2 inhibitors, as indicated by

landmark publications, is summarized in Table 1.

Despite the many valid criticisms of the so-called “linear model,” in which government-

funded basic research leads to privately-funded applied research and privately-funded product

development, the linear model more or less describes what actually happened in the case of

COX-2 inhibitors. COX-2 and its role in inflammation was discovered in academic labora-

tories funded by government grants and private foundations; as soon as the results became

public, private firms funded further research, followed by development of products that took

advantage of the publicly-funded research.

It should be noted that the success of the linear model in this case does not carry

an unambiguous public-policy message. On the one hand, it might be argued that in this

case public funding led to important products that will vastly improve public health, and

thus created a net social benefit. However, it would be just as valid to argue that since

private firms make substantial profits from these products despite paying only a portion of
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Source of Funding

Year Author(s), Affiliation Type Organization(s) Summary & Publication

1971
John R. Vane
Royal College of Surgeons

Govt./
Fndn.

Medical Research Council,
Wellcome Trust

NSAIDs work by inhibiting COX.

Nature New Biology 231:232–235

1971
J. B. Smith & A. L. Willis
Royal College of Surgeons

Govt. Medical Research Council
Aspirin inhibits COX.

Nature New Biology 231:235–237

1989
Simmons, et al.
Harvard University

Govt./
Fndn.

Natl. Institutes of Health,
American Business
Cancer Res. Foundation

Discovery of a second COX-producing
gene induced in chicken fibroblasts.

Proc. Natl. Acad. Sci. USA 86:1178–1182

1990
Gans, et al.
DuPont Pharm. R&D Div.

Corp.
E.I. du Pont
de Nemours & Co.

Powerful NSAID with no GI lesions
(Predecessor to Vioxx and Celebrex)

Journal of Pharmacology and Experimental

Therapeutics 254:180–187

1991
Kujubu, Herschman, et al.
University of California,
Los Angeles

Govt.
Natl. Institutes of Health,
U.S. Dept. of Energy

Discovery of a second COX-producing
gene induced in murine fibroblasts.

J. Biological Chemistry 266:12866–12872

1991
Xie, Simmons, et al.
Brigham Young University

Govt./
Fndn.

Natl. Institutes of Health,
Bireley Foundation

Breakthrough: Two forms of COX exist.

Proc. Natl. Acad. Sci. USA 88:2692–2696

1991-
1992

O’Banion, Young, et al.
University of Rochester

Govt./
Fndn.

Natl. Institutes of Health,
J.P. Wilmot Foundation

Breakthrough: Two forms of COX exist.

J. Biological Chemistry 266:23261–23267
Proc. Natl. Acad. Sci. USA 89:4888–4892

1997
Penning, et al.
G. D. Searle & Co.

Corp. G. D. Searle & Co.
Description of celecoxib (Celebrex)

J. Medicinal Chemistry 40:1347–1265

1997
Prasit, et al.
Merck & Co.

Corp. Merck & Co.
Description of rofecoxib (Vioxx)

Ann. Rep. Medicinal Chemistry 32:211–220

1998 Searle’s Celebrex approved by FDA, Dec. 31, 1998

1999 Merck’s Vioxx approved by FDA, May 20, 1999
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the development costs, public funding of the research that led to the discovery of COX-2

represents a significant subsidy to the pharmaceutical industry.

In a high-risk endeavor such as medical research, where hundreds or even thousands

of projects must be funded for every one that eventually produces a noticeable impact on

public health, it is impossible to evaluate the system of funding and profit incentives simply

by examining instances of the relatively few research projects that are known ex post to

have led to successful products. This is why statistical analyses of the effects of aggregate

spending is an essential line of inquiry.

6 Data

6.1 Drug Industry Research

Data on private-sector research are collected by PhRMA, an industry group whose members

include virtually all major U.S. firms conducting pharmaceutical research. PhRMA surveys

its members annually30 and publishes data on R&D spending by therapeutic category. These

therapeutic categories correspond to the five-digit SIC codes used by the Census Bureau for

reporting drug shipments (sales) in the Current Industrial Reports for the pharmaceutical in-

dustry. The relevant therapeutic categories, together with private and federal R&D spending

and drug sales for the most recent year available, are listed in Table 2.

30 Except 1984. Available data for 1984 include total budgeted R&D but not total actual R&D or
breakdown by therapeutic category. Apparently, PhRMA did not conduct the survey for 1984, and current
PhRMA staff (as of early 2000) said they do not know why. In order to avoid losing too many degrees
of freedom in distributed-lag regressions, the 1984 values for each category are estimated here by linearly
interpolating the share of R&D devoted to that category based on the 1983 and 1985 shares and then
multiplying the estimated share by the total budgeted R&D.
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Table 2: Therapeutic Categories for reporting Pharmaceutical R&D and Sales

1996 ($mil)
SIC Description Private Federal Drug
Code R&D Grants Sales

28341 Affecting neoplasms, endocrine system, and metabolic diseases 2,988.2 1,465.1 4,788.0
28342 Acting on the central nervous system and sense organs 3,071.3 1,669.0 10,123.1
28343 Acting on the cardiovascular system 1,937.7 1,062.0 6,911.9
28344 Acting on the respiratory system 908.4 430.2 4,993.9
28345 Acting on the digestive or genito-urinary system 417.0 859.3 8,494.4
28346 Acting on the skin 203.8 163.5 2,184.8
28348 Acting on infective and parasitic diseases 1,959.9 972.1 7,304.1

Sources: Pharmaceutical Research and Manufacturers of America;

U.S. Department of Commerce, Bureau of the Census.

6.2 Government-sponsored Research

Data on publicly-funded biomedical research were obtained from the NIH, which has pub-

lished on CD-ROM project-level data on virtually every biomedical research project funded

by the federal government (through the U.S. Public Health Service) from 1972 to 1996. This

database, called CRISP (Computer Retrieval of Information on Scientific Projects), includes

both “intramural” projects of government organizations, such as the NIH and the FDA, and

“extramural” projects, funded by grants to researchers at outside organizations, primarily

universities and teaching hospitals. The bulk of the funding (82% in fiscal 1999) goes to

extramural projects.

Each record in the CRISP database corresponds to a single project during a single

fiscal year. (Multi-year projects appear in the database separately for each year.) Each

record includes the grant number, principal investigator, project title, sometimes an abstract,

amount of funding for that fiscal year, various other items, and a list of “thesaurus terms,”

some of which describe the disease or diseases to which the particular project is related.

These “thesaurus terms” come from a controlled vocabulary organized in a hierarchical

structure (much like a library’s subject index), in which lower-level entries correspond to
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more specific diseases. Using this “tree-structure” of diseases,31 the thesaurus terms can be

aggregated into thirty-five “top-level” disease categories, and then those disease categories

can be further aggregated into the seven therapeutic categories corresponding to the seven

(five-digit) SIC codes used by PhRMA to report private R&D and by the Census Bureau to

report drug shipments.

This aggregation process unfortunately cannot perfectly match research grants on

diseases to SIC codes of drugs used to treat those diseases. The most obvious problem is

that the SIC codes are extremely broad-based, and it is often difficult to determine which of

the detailed disease categories match which SIC therapeutic categories. However, the more

serious problem is that the SIC codes each correspond, not to a class of diseases, but to a

particular organ system or disease process on which the drug acts (see Table 2). In some

cases, a drug can act on one organ system to treat a disease that is primarily associated

with another organ system. For example, a grant for research on the effects of cholesterol

on heart disease might be classified as “cardiovascular” research, since the research concerns

diseases of the cardiovascular system. However, development and sales of a cholesterol-

reducing drug would be classified in the “digestive” SIC category because the drug itself

“acts on the digestive system.” PhRMA reports all private-sector data, including both

research expenditures and sales, using the SIC “drug acting on organ system” therapeutic

categories, and the Census Bureau reports sales on this basis as well.

After assigning each thesaurus term to a therapeutic category, each of the 1,137,498

projects funded between 1972 and 1996 was assigned to one or more therapeutic categories

31 This “tree-structure” was not publicly available from NIH until recently. While one could look up each
project and find the thesaurus terms assigned to it, the list of terms and the hierarchical structure used
by NIH to assign them was published only once, in book form in 1989. It was not published again, or in
machine-readable form at all, until 1997. In addition, many terms were changed from one year to the next,
but a year-by-year historical concordance was never published. NIH did not release the concordance and
the updated thesaurus until Prof. Frank Lichtenberg of Columbia University filed a Freedom of Information
Act request to obtain the thesaurus tree and the coding system used to link terms which changed from one
year to the next. In 1997 and 1998, NIH included a list of thesaurus terms on the CD-ROMs for those years,
but not the coding system or the historical concordance — and also did not include the funding levels. I am
grateful to Prof. Lichtenberg for providing me with the thesaurus he obtained, complete with the coding
system and the year-by-year historical concordance.

49



based on its thesaurus terms. Following Lichtenberg (1999a), the full funding level of each

project is counted in each category for which it has a thesaurus term listed. Although this

results in multiple counting of research dollars, this is appropriate when considering research

spending at the category level since a project that impacts multiple therapeutic categories

will affect private research decisions in all those categories.

6.3 Summary of Data

Figure 2 displays the level of public (“Grants”) and private (“PhRMA”) funding for each of

the seven therapeutic categories for the period 1972-1996. Figure 3 shows log-changes for

the same data.

One problem with analyzing spending data covering such a long period of time is

that prices change. Fortunately, there is a price index specifically tailored to prices of inputs

to medical research. The Biomedical Research and Development Price Index (BRDPI),

developed by the Bureau of Economic Analysis (BEA) of the Department of Commerce

primarily for NIH budgeting purposes, measures the average price of all inputs (including

salaries of scientists) to biomedical research purchased with the NIH budget. These inputs

are likely to be similar to those purchased for anyone performing biomedical research, so this

price index is used to adjust both public and private expenditure data to constant dollars.

The BRDPI, along with grants awarded in current and constant 1972 dollars, is illustrated

in Figure 4.
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Figure 2: Federal Research Grants (“Grants”) and Private R&D of
PhRMA members (“PhRMA”), by Therapeutic Category.
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Figure 3: Log of Annual Changes in Federal Grants and
Private R&D of PhRMA members, by Therapeutic Category.
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7 Models of Scientific Research

7.1 Models of the Research Process

The simplest — and surely the earliest — “model” of the scientific research process is the

so-called “linear model” proposed by Francis Bacon (1561-1626) and still the dominant

assumption in science policy discourse today. According this model, technology evolves

according to a simple three-step process:

Basic Research −→ Applied Research −→ Development

The first step is “basic research,” which is scientific inquiry oriented toward understanding

natural processes rather than toward producing marketable products or making profits.32

Basic research produces “scientific knowledge,” which is a non-rival public good. That is, it

can be used by anyone without reducing the stock available to others. Scientific knowledge

is an input into the second step, “applied research,” which is scientific inquiry oriented

toward solving specific problems with some practical aim in mind. Applied research produces

“technology,” which in this context means some new process that might be economically

useful. The third step, “development” consists of taking the technology and producing

a potentially marketable product or service that makes (potentially) profitable use of the

technology. The process is imagined to look something like this:

Scientist
(Labor)

-

Basic
Research

Knowledge -

Applied
Research

Technology -

Development
Product

Like all models, this is somewhat of an oversimplification. Applied research aimed

at producing a technology often generates questions that need to be answered, but whose

32 Some practitioners of basic research are quite explicit about their intent not to aim for discoveries
with financial value and use the term “pure research” to describe research with scientific but not financial
value. Needless to say, many discoveries of pure research are later found to have great financial value. For
example, research into abstract algebra and number theory, arguably the purest of “pure mathematics” has
produced the main input into cryptography, which is now a multi-billion-dollar industry protecting financial
transactions and trade secrets.
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answers consist of basic scientific knowledge. Technology is used to develop products (e.g.,

scientific instruments) that make new types of basic research possible or new lines of inquiry

interesting. And, sometimes, basic research results in new technology without any interven-

ing “applied research” step (see footnote 32, for example). Nevertheless, the linear model

is a reasonable representation of the pharmaceutical industry, in which basic research into

the nature of diseases produces knowledge of their mechanisms or causes. Applied research

is aimed at blocking those mechanisms and causes, often by characterizing a hypothetical

molecule that could interfere with a biochemical mechanism. Development consists of con-

structing such a molecule that is effective and non-toxic to humans, developing a form and

and determining a level of dosage, and verifying safety and efficacy of the final drug.

7.2 Economic Models of Research

We are concerned primarily with incentives that encourage firms to undertake costly research

and development (R&D). Clearly, a firm’s decisions must be based on an attempt to equate

the firm’s (expected) marginal cost of R&D with its (expected) marginal return (appropri-

ately adjusting for risk). The main sources of risk are uncertainty as to whether and when

the research will produce a marketable product and what the demand for that product will

be. In the case of pharmaceuticals, demand for a product is a fairly predictable function of

the prevalence of relevant diseases and availability, cost, and efficacy of other drugs used to

treat those diseases. From the standpoint of the pharmaceutical firm, the main source of

risk is uncertainty as to the success of the applied research program, which may produce a

marketable drug quickly or slowly, at low cost, high cost, or not at all even after incurring

large costs.

Basic research is inherently more risky than applied research, since there is additional

uncertainty as to whether the knowledge produced will be useful in developing products.
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Furthermore, since basic scientific knowledge cannot be protected by patents and is often

difficult to keep secret, there is also the risk that the research output will become inappropri-

able, allowing competing firms to take advantage of the knowledge and produce a competing

product without incurring the same costs. The possibility of “free riding” can reduce the ex

ante expected return to the firm to well below the social return, thus causing the firm to un-

derinvest in basic research relative to the social optimum. This is the fundamental problem

with obtaining the optimal level of basic research through ordinary market processes, first

explicitly identified by Nelson (1959) and Arrow (1962), and also the basic justification for

government subsidies of basic research.

A firm’s optimal expenditure on basic research is some function of the following form:

BR = f(C,R(A))

where

BR = Basic Research expenditure

C = Unit Cost of Research (including wages of researchers)

R = Firm’s (utility) of return, i.e., risk-adjusted expected return

A = A measure of the degree and likelihood of appropriability of discoveries

Clearly, f ′(C) < 0, f ′(R) > 0, and R′(A) > 0. However, the firm’s return R(A) may

be greater or less than the social return, and R(A) may increase or decrease with an increase

in government funding of basic research.

It is possible that a firm’s private return may be greater than the social return in a

case where the firm’s innovation is appropriable and represents an unambiguous improvement

over an existing technology. For example, Firm A may have a drug to treat a certain disease,

and Firm B might develop a drug that treats the same disease more effectively but at the

same or lower cost. Once Firm B’s drug is available, there will be very little demand for
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Firm A’s drug. In this case, the social return is determined by the value of the improvement

in effectiveness — i.e., the marginal value — of the new drug over the old one. However,

Firm B’s return is determined by the total value of the benefit of the new drug rather than

the marginal value, since consumers’ willingness to pay is based on the total benefit received.

More commonly, however, a firm’s private return will be less than the social return.

Even as a monopolist, the firm generally cannot perfectly price-discriminate, and the utility

to some consumers will be very large. Furthermore, the existence of alternative technologies

(e.g., drugs) may prevent the firm from charging the full monopoly price, even if at the

price actually charged the firm has almost all the market share. More importantly, in many

cases the firm will not be able to appropriate fully the value of the underlying innovation.

For example, a Firm A might perform basic research and discover how a particular disease

works, then develop a drug to block the disease process. In the course of obtaining FDA

approval and marketing the drug to potential consumers, Firm A will have to reveal what

it discovered about the disease process (its “basic research” results). Unlike the drug itself,

this information cannot be protected by patents. Firm B could then use that information

to develop a superior (“next-generation”) drug, which might eliminate the demand for Firm

A’s drug.

Public spending on basic research can have two effects on the returns to private

research. First, when the government undertakes a research program, the results of which

will be publicly available, it is less likely that an individual firm’s private research program

on the same topic will produce appropriable results, since similar results are likely to be

published and thus available to the firm’s competitors as a result of the government research

program. Furthermore, the firm itself will also be able to access the results of the government

research program at a much lower cost than that of conducting its own research, therefore

the marginal effect of a private research program on the firm’s stock of knowledge will be

much lower in the presence of a similar public research program. Both of these factors will
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produce a “crowding-out” (substitution) effect, in which each additional dollar of government

research reduces the returns to, and thus the level of, private research.

On the other hand, when the government undertakes a research program and makes

the results publicly available, the stock of scientific knowledge available to all firms increases,

and this results in an increase in the opportunities for applied research. Although the infor-

mation is available to all firms, the marginal cost to each firm of producing applied results

is lower since the firm does not have to incur the cost of basic research. This will produce

a “stimulation” (complementarity) effect, in which each additional dollar of government

research increases the returns to and thus the level of private research.

In theory, either or both of these effects may be present; if both are present, which

effect will dominate is an empirical question.

The goal of this paper is to examine the relationship between public funding of basic

biomedical research and private R&D funding and output in the pharmaceutical industry;

in particular, to determine whether, on the whole, public research funding “crowds out”

(substitutes for) or “stimulates” (complements) private R&D expenditures in this industry.

Since research does not take place instantaneously, it is reasonable to believe that

any effect of federal research grants on private R&D will be felt only after some period of

time. However, it is not obvious how long the lag will be. If, for example, pharmaceutical

research firms regularly monitor grants made by the NIH and take care to complement (or

alternatively, take care not to replicate) research funded by the government, then the lag may

be quite short, and the effect on private R&D would be positive (alternatively, negative).

On the other hand, if not enough information is available at the time the grant is made for

firms to use this as as basis for decision-making, then the firms would instead have to base

decisions on research results (e.g., publications), and the lag would be longer.33 Furthermore,

33 Pharmaceutical firms definitely monitor academic research (Pien 1999; Mullen 2000), which is mostly
federally funded (Blumenthal et al. 1996). The question here is not whether firms make use of this infor-
mation, but at what stage of the process the information becomes useful. It is often the case that as an
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if the main interaction between federally funded research and private research is that firms

apply knowledge obtained through federally funded research directly to development of new

drugs, then we would expect a substantially longer lag and a positive effect.

It is possible, of course, for more than one of these effects to be important. For

example, there could be short-run substitution or complementarity due to the effect of federal

grant announcements on firms’ R&D planning, and long-run complementarity due to the

effect of academic research results on firms’ applied research and product development. It is

difficult, however, to imagine a scenario in which the long-run effect would be substitution.

That is, for a unit increase in federal spending at a particular point in time, it would be

reasonable to expect either an increase or a decrease in private spending in the short run,

but in the long run we should expect an increase in private spending, ceteris paribus.

A firm’s optimal expenditure on applied research is also a function of the above

variables as well as variables that might indicate demand for the type of product that is

the ultimate goal of the research program. A reasonable characterization of the research

expenditures of the pharmaceutical industry is

PhRMAt = f(Xt, . . . , Xt−j) + g(Xt−j−1, . . . , Xt−j−k) + h(other variables) (1)

where

PhRMAt is private research spending by the pharmaceutical
industry in year t;

Xt, . . . , Xt−j are government biomedical research spending in year
t and years preceding t (short-run lags);

Xt−j−1, . . . , Xt−j−k are government biomedical research spending in years
preceding year (t − j) (long-run lags).

The functions f and g will have negative first derivatives where the “crowd-out” effect dom-

inates, and positive first derivatives where the “stimulant” effect dominates. In particular,

academic research program progresses, it becomes “too applied” to qualify for continued federal funding.
At that point, sometimes a private firm will fund further applied research by the academic lab (Pien 1999).
Indeed, Blumenthal et al. estimated that more than 11% of academic research in the life sciences is funded
by corporations. This counts as private R&D in our data.
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if the short-run effect is the opposite of the long-run effect, then j is the lag at which the

effect reverses.

8 Empirical Results and Interpretation

Lag structure can be investigated by running distributed lag regressions of the log-changes of

private R&D on the log-changes of federal research funding, for each of the seven therapeutic

categories for which we have data and for the total funding levels (for all categories put

together, netting out the “double-counted” research discussed on page 50). The functional

form for these regressions is

Yt = a +
k
∑

i=0

biXt−i + h(other variables) (2)

where

Yt = log

(

yt

yt−1

)

, yt = Private R&D in year t

Xt = log

(

xt

xt−1

)

, xt = Federal research grants in year t

k = the number of lags, ranging from 0 to 7

For each of the seven therapeutic categories and for the total funding levels, regressions of

the above form were run for each possible number of lags k = 0 . . . 7. Regressions using

log-changes instead of first differences are reported, since log-changes can be interpreted as

relative (percentage) changes and are not sensitive to the scale of the variables, and thus

are more useful for comparisons. (In any case, results of regressions using first differences

are qualitatively similar.) In addition, regressions were run with data for all categories

combined, with dummy variables for each category, as well as year dummy variables and

various combinations of other variables. The “other variables” are used as controls, to

increase the chance that the effects observed are actually from changes in government funding
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rather than from other factors. In particular, we control for autocorrelation (using lagged

values of the dependent variable), GDP growth, lagged sales growth (by drug category),

current and lagged non-medical federal R&D spending (replacing the independent variables),

and category and year dummy variables.

Each regression coefficient bi may be interpreted as the effect on private R&D in year

t of an increase in federal funding in the same therapeutic category in year t − i. For any

particular regression, the sum of the coefficients
∑k

i=0 bi may be interpreted as the cumulative

effect on private R&D over k years, of a 1% increase in in federal funding in a single year.

8.1 Basic Results

Table 3 shows the results of the distributed-lag regressions (2), and Table 4 shows the results

of the same distributed-lag regressions, but with grants and PhRMA expenditures adjusted

to constant (1972) dollars using the BRDPI. Each cell in the table contains the sum of

coefficients for the regression with the given number of lags, which represents the cumulative

impact on private R&D in the given therapeutic category of a 1% change in federal grants in

that category in a single year. Numbers in parenthesis are t-statistics for the hypothesis test

that the sum of the coefficients is zero for the corresponding regression.34 Figure 5 displays,

34 Note that each number in parenthesis in Tables 3 and 4 is the t-statistic of the sum of the coefficients
bi, i = 0 . . . k. This is of course different from the standard error of any particular coefficient, and is not
calculated as part of the usual regression procedure. To calculate this t-statistic, consider the regression

equation (2) above. Add and subtract
∑k

i=1
biXt to both sides (note that this summation is of the current

(non-lagged) value Xt multiplied by the coefficients of the lagged values). Then, collect like terms in Xt as
follows:

Yt = a +

k
∑

i=0

biXt−i +

(

k
∑

i=1

biXt −
k
∑

i=1

biXt

)

+ h(other variables)

Yt = a + b0Xt +

k
∑

i=1

biXt−i +

k
∑

i=1

biXt −
k
∑

i=1

biXt + h(other variables)

Yt = a +

(

b0Xt +

k
∑

i=1

biXt

)

+

(

k
∑

i=1

biXt−i −
k
∑

i=1

biXt

)

+ h(other variables)
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for each category (and for total research), a plot of the cumulative predicted percentage

change in private R&D spending for each subsequent year, corresponding to a +1% change

in an initial year, for figures in both current and constant dollars.

Note that although the results are different for each category, there is a discernible

pattern: over a small number of lags, the cumulative effect is negative in five of the seven

categories, and small but generally increasing in the other two. For longer lags, the cumu-

lative effect is more likely to be positive, and by the seventh lag is positive for all but one

category. The final column shows the average, over all therapeutic categories, of the sum

of coefficients for a particular number of lags k. Here the same pattern is discernible; the

average cumulative effect is negative for lags zero through four, and positive (and increasing)

for lags five through seven.

It is apparent from the graphs in Figure 5 that for all categories, the cumulative

effect on private R&D spending shows a definite negative response at least at some point

within the first two years, and the effect increases at some point thereafter. For all but two

categories the cumulative response after seven years is higher than the initial response, and

the ultimate response is usually positive. Note also that the responses for constant (i.e.,

BRDPI-adjusted) dollars are more pronounced and usually more negative than those for

current dollars.

In other words, due to the fact that both prices and quantities are increasing over

time, the crowd-out (substitution) effect is more pronounced when the expenditures are

adjusted for inflation. This may account for the fact that this study finds more crowding-

Yt = a +

(

k
∑

i=0

bi

)

Xt +

k
∑

i=1

bi(Xt−i − Xt) + h(other variables)

This produces an alternate regression in Xt and the transformed variables (Xt−i − Xt), i = 1 . . . k. The
coefficients (both true and estimated) of the transformed variables are exactly the same as those of the
corresponding original variables Xt−i, i = 1 . . . k in (2), but the coefficient of Xt in the alternate regression
is the sum of the coefficients of the original variables Xt−i, i = 0 . . . k in the original regression. Thus, I
estimate the alternate regression above, and report the t-statistic of the coefficient of Xt in the alternate
regression in parenthesis in Tables 3 and 4.
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Dependent Variable: Y = PhRMA Corporate R&D, by disease category (log changes)
Independent Variable: X = Federal Grants, by disease category (log changes)

Each cell contains the sum of coefficients for the regression with the given number of lags.
(The number in parenthesis is the t-statistic of the sum of coefficients.)
Lags
of X

Neoplasm Nervous Cardio Respir Digest Skin Infective Totalsa
Lag
Avg.b

0 -0.0159 -0.1915 0.2647 0.0348 -0.1899 -0.2924 -0.0253 -0.0973 -0.0594
(-0.1394) (-2.1584) (1.6423) (0.2807) (-1.3985) (-1.4829) (-0.2702) (-0.4049)

1 -0.1159 0.0382 0.1488 -0.1115 -0.3124 -0.7446 -0.2466 -0.0173 -0.1920
(-0.8069) (0.3066) (0.6739) (-0.6333) (-1.5246) (-2.9890) (-1.5509) (-0.0465)

2 -0.1289 0.1928 0.0226 -0.3971 -0.0492 -0.3022 -0.4336 -0.1377 -0.1565
(-0.6909) (1.0392) (0.0759) (-1.7191) (-0.1726) (-0.8885) (-1.6425) (-0.2405)

3 -0.3401 0.3143 0.3515 -0.8935 0.0441 -0.3380 -0.5872 -0.1047 -0.2070
(-1.2797) (1.7301) (1.0365) (-3.2771) (0.0885) (-0.7440) (-1.8109) (-0.1313)

4 -0.5950 0.4081 0.8797 -0.4774 -0.7930 -0.1845 -0.6576 -0.1628 -0.2028
(-1.6073) (2.4012) (2.5388) (-1.6264) (-1.3322) (-0.3063) (-1.6259) (-0.1487)

5 -0.9408 0.4398 0.9860 -0.2841 0.5596 0.6177 -0.4997 0.6178 0.1255
(-1.7646) (2.3932) (2.2650) (-0.7496) (0.7361) (0.8187) (-0.5171) (0.4756)

6 -0.6430 0.5186 1.2114 -0.2622 0.0949 0.2112 -0.5271 0.5746 0.0863
(-0.8489) (2.4830) (2.3944) (-0.5393) (0.0788) (0.2250) (-0.3500) (0.3683)

7 -1.6358 0.3805 2.0122 0.4550 0.7895 -1.0401 1.8610 -0.3931 0.4032
(-1.3254) (1.5449) (3.3869) (0.6375) (0.3621) (-0.6944) (1.5839) (-0.1943)

Sum -4.4155 2.1007 5.8769 -1.9358 0.1434 -2.0729 -1.1162 0.2795 -0.2028
Wtd.
Avg.c -0.1227 0.0584 0.1633 -0.0538 0.0040 -0.0576 -0.0310 -0.00563
Avg.d -0.5519 0.2626 0.7346 -0.2420 0.0179 -0.2591 -0.1395

aTotal Grants includes grants not in any disease category.
bThe average is taken over category regressions only.
cThe average cumulative response, weighted by number of coefficients; or equivalently, the average coefficient.
dThe average cumulative response over the eight regressions; i.e., each regression has equal weight.
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Dependent Variable: Y = PhRMA Corporate R&D, by disease category (log changes)
Independent Variable: X = Federal Grants, by disease category (log changes)

Each cell contains the sum of coefficients for the regression with the given number of lags.
(The number in parenthesis is the t-statistic of the sum of coefficients.)
Lags
of X

Neoplasm Nervous Cardio Respir Digest Skin Infective Totalsa
Lag
Avg.b

0 -0.0535 -0.1164 0.1861 0.0211 -0.2192 -0.3045 -0.0390 -0.0241 -0.0751
(-0.4688) (-1.1386) (1.2181) (0.1691) (-1.5808) (-1.4975) (-0.4285) (-0.1090)

1 -0.1774 0.1400 -0.0118 -0.1382 -0.3630 -0.7816 -0.2536 -0.0062 -0.2265
(-1.2542) (0.9796) (-0.0576) (-0.7888) (-1.7596) (-3.0807) (-1.6133) (-0.0185)

2 -0.2187 0.3223 -0.3306 -0.4360 -0.1227 -0.3447 -0.3410 -0.1627 -0.2102
(-1.1909) (1.5741) (-1.2568) (-1.9253) (-0.4287) (-0.9883) (-1.2983) (-0.3324)

3 -0.4223 0.4384 -0.0796 -0.9203 0.0282 -0.4141 -0.4837 -0.1995 -0.2648
(-1.5813) (2.3096) (-0.2346) (-3.2325) (0.0581) (-0.8745) (-1.4086) (-0.3039)

4 -0.7133 0.5599 0.3978 -0.5734 -0.7115 -0.2896 -0.5094 -0.2267 -0.2628
(-2.0113) (3.0214) (1.0401) (-2.0989) (-1.2524) (-0.4350) (-1.2213) (-0.2738)

5 -1.0396 0.5952 0.3309 -0.4662 0.2824 0.5479 0.1050 0.0131 0.0508
(-2.1779) (3.0319) (0.6625) (-1.3259) (0.4241) (0.6357) (0.1542) (0.0148)

6 -0.8694 0.6549 0.3831 -0.6437 -0.5910 -0.0855 0.2303 -0.3217 -0.1316
(-1.1584) (2.8679) (0.5850) (-1.2984) (-0.6612) (-0.0803) (0.2562) (-0.3324)

7 -1.2730 0.5220 1.0320 -0.3441 -0.6463 -2.3354 1.2068 -0.9100 -0.2626
(-0.9083) (1.9032) (0.9596) (-0.4105) (-0.4665) (-1.3852) (1.5759) (-0.8227)

Sum -4.7672 3.1162 1.9079 -3.5009 -2.3431 -4.0075 -0.0846 -1.8379 -1.3827
Wtd.
Avg.c -0.1324 0.0866 0.0530 -0.0973 -0.0651 -0.1113 -0.0024 -0.0384
Avg.d -0.5959 0.3895 0.2385 -0.4376 -0.2929 -0.5009 -0.0106

aTotal Grants includes grants not in any disease category.
bThe average is taken over category regressions only.
cThe average cumulative response, weighted by number of coefficients; or equivalently, the average coefficient.
dThe average cumulative response over the eight regressions; i.e., each regression has equal weight.
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Figure 5: Cumulative predicted percent change in Private (PhRMA) R&D cor-
responding to a one-time +1% change in Federal Research Grants, by Therapeutic
Category. In each plot, the solid line represents the response in current dollars;
and the dashed line in constant dollars according to the Biomedical Research and
Development Price Index (BRDPI).
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out than do previous studies, since previous studies either used only current-dollar data or

adjusted prices using the more general GDP implicit price deflator rather than the BRDPI,

a price index that is specific to biomedical R&D inputs.

8.2 Interpretation

To interpret these results, first note that for regressions with “Grants” as the independent

variable and “PhRMA spending” as the dependent variable, the sums of coefficients are

generally negative when zero through four lags are in the regression (5 negative, 2 positive),

split (3 negative, 4 positive) when 5 or 6 lags are included, and generally positive (6 positive,

1 negative) with 7 lags. (The results are similar for a “pooled” regression, i.e., a single

regression that includes observations for all categories.)

There is one very obvious story that would explain the existence of positive sums

only in the higher lags — specifically, that government grants stimulate private research,

but only 5 or more years into the future — but the combination of negative and positive

results requires a more complicated explanation. One possibility is the following scenario:

government grants are primarily intended for so-called basic research. These grants crowd

out private basic research, because private firms are not willing to spend their resources

doing basic research in a particular field if the government is doing it anyway and will

publish the results for all to see. On the other hand, when basic research results become

known to a private firm (either through reading results of public research, as in this story,

or by doing their own research, as in the counterfactual case of no government funding), this

increased knowledge leads to an increase in applied research by firms in the future. So, what

we observe in these data is the effect of government (basic) research crowding out private

basic research but stimulating private applied research. Since the lag for stimulating applied

research is longer (firms can respond only after the research is completed and the results
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become known), this shows up in the data as crowding-out in the short run but stimulation

in the long run.

This story has the advantage that it is consistent with the prediction of any reasonable

theoretical model that distinguishes between basic and applied research (a distinction that

is somewhat problematic, but less so in biomedical research than in other fields) and allows

that the government specializes in basic research. It also implies that in this case, we can

rule out the extreme crowd-out effect described on page 12.

8.3 Robustness Checks

Numerous robustness checks were performed to verify that the results obtained above were

not spurious, or the result of other factors. For example, vector autoregressions (VAR) of

the form

Yt = a +
k
∑

i=0

biXt−i +
k−1
∑

i=1

aiYt−i + b log

(

yt−1

xt−1

)

(3)

can be used to determine whether the observed lag effects are due to actual lagged correlation

between federal and private research, as opposed to mere autocorrelation in private research

combined with the fact that both types of spending are generally increasing. An an F -

test can then be applied to test this form against the corresponding regression without the

autocorrelation terms.

Table 5 lists the results of running regressions (3) and using the F -test to decide

whether the additional coefficients included in (3) but not (2) are significantly different

from zero. For six of the seven therapeutic categories, the hypothesis that autoregressive

terms should be excluded cannot be rejected at significance level α = .05. Thus, we might

reasonably conclude that changes in the level of grants are better predictors of changes in

private R&D than previous (“momentum”) changes in private R&D. However, this result

is rather weak, since for four of the seven categories, the complementary hypothesis (that
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all but the autoregressive terms should be excluded) also cannot be rejected at significance

level α = .05.

In addition to the F -tests, the coefficients of the vector autoregressions (VAR) can

be used to calculate the cumulative average effect of a single unit change in federal research

spending on private spending in subsequent years, considering direct as well as autoregressive

effects. Results of these calculations appear in Table 6 and are plotted in Figure 6. Note that

there is no consistent pattern of cumulative effects when autoregressive terms are included; in

particular, the “
⋃

-shaped” pattern of short-run substitution and long-run complementarity

observed for grants is not observed for lagged private R&D. Therefore, it is reasonable to

conclude that this effect is not due to spurious autocorrelation in private R&D.

Having ruled out autoregressive effects, it is necessary to control for other factors that

might affect private R&D spending. Clearly, private pharmaceutical R&D spending is driven

by demand for pharmaceuticals. Firms may allocate funds to different disease categories

based on estimates of demand for drugs used to treat those diseases. To control for this

effect, we use lagged drug sales (dollar volume) in each category to represent demand in that

category. Firms may also respond to a general increase in demand caused by an increase in

overall income. To control for this effect, we use GDP as the measure of income. In addition,

we can increase the effective sample size by including data for all categories in the sample,

in some cases with dummy variables to examine category fixed effects. The functional form

is

Yjt = a +
k
∑

i=0

biXj,t−i + h(other variables) (4)

where

Yjt = log

(

yjt

yj,t−1

)

, yjt = Private R&D for category j in year t

Xjt = log

(

xjt

xj,t−1

)

, xjt = Federal grants for category j in year t

Tables 7 and 8 shows the results of the distributed-lag regression (4) with various
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Table 5: Hypothesis Test of Vector Autoregression vs. Distributed Lag Regression

VAR Regression: Yt = a +

k
∑

i=0

biXt−i +

k−1
∑

i=1

aiYt−i + b log

(

yt−1

xt−1

)

Hypothesis Test: H0 : ai = 0 for all i = 1 . . . k = 1 and b = 0

HA : ai 6= 0 for at least one i

At Significance Level α = .05, Reject H0 if F > F.05

(In the table below, “Accept” is shorthand for “Fail to Reject.”)

Test Critical Test Critical
Lags Lags Statistic Value Lags Lags Statistic Value
of X of Y F F.05 Decision of X of Y F F.05 Decision
Neoplasm Digest

2 1 0.9648 3.6337 Accept 2 1 2.2875 3.6337 Accept
3 2 0.2675 3.4105 Accept 3 2 1.0788 3.4105 Accept
4 3 0.3828 3.4781 Accept 4 3 1.4012 3.4781 Accept
5 4 0.4933 3.9715 Accept 5 4 1.0504 3.9715 Accept
6 5 0.1839 6.1631 Accept 6 5 1.9518 6.1631 Accept
7 6 0.1835 236.77 Accept 7 6 5.0164 236.77 Accept

Nervous Skin
2 1 2.7405 3.6337 Accept 2 1 0.8903 3.6337 Accept
3 2 2.1960 3.4105 Accept 3 2 2.3541 3.4105 Accept
4 3 1.4429 3.4781 Accept 4 3 2.0954 3.4781 Accept
5 4 1.8754 3.9715 Accept 5 4 1.8744 3.9715 Accept
6 5 1.8284 6.1631 Accept 6 5 1.2102 6.1631 Accept
7 6 4.2841 236.77 Accept 7 6 14.430 236.77 Accept

Cardio Infective
2 1 12.834 3.6337 Reject 2 1 1.7332 3.6337 Accept
3 2 4.9248 3.4105 Reject 3 2 0.6028 3.4105 Accept
4 3 7.4959 3.4781 Reject 4 3 1.1164 3.4781 Accept
5 4 7.5147 3.9715 Reject 5 4 0.6563 3.9715 Accept
6 5 8.6870 6.1631 Reject 6 5 1.0409 6.1631 Accept
7 6 1.5835 236.77 Accept 7 6 2.0116 236.77 Accept

Respir
2 1 0.4672 3.6337 Accept
3 2 2.0460 3.4105 Accept
4 3 1.9413 3.4781 Accept
5 4 1.8909 3.9715 Accept
6 5 0.7872 6.1631 Accept
7 6 12.122 236.77 Accept
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Table 6: Cumulative Direct and VAR Effects of Log of Annual Changes in Federal Grants
on Private R&D.

(Each cell contains the change in Yt, t periods after a unit log-change in X, implied by the regression with
k lags of X and k − 1 lags of Y .)

t
k 0 1 2 3 4 5 6 7 8

N
eo

p
la

sm

2 0.0820 -0.1264 -0.0952 0.0535
3 -0.0686 -0.1488 -0.0840 0.0688 0.0145
4 -0.0731 -0.1680 -0.1643 0.1951 -0.1568 0.1005
5 -0.0325 -0.1661 -0.2430 0.1458 -0.0378 -0.0732 0.1588
6 -0.0842 -0.0277 -0.2945 -0.1024 0.0632 0.1464 0.0432 0.1687
7 -0.1449 -0.4939 -0.6464 -0.3053 -0.0949 0.1539 -0.4056 0.2742 -0.4388

N
er

vo
u
s

2 0.1993 0.1249 0.0066 -0.0508
3 0.2451 0.1633 0.1604 0.0620 -0.0647
4 -0.2162 -0.0153 0.1742 0.1486 0.0201 -0.2657
5 -0.2848 0.0371 0.2170 0.2871 -0.0045 -0.2708 -0.2845
6 -0.2817 -0.0141 0.3821 0.2406 0.0340 -0.3343 -0.1236 -0.0683
7 -0.4545 -0.3835 -0.3726 -0.5444 -0.8403 -1.5810 -2.0704 -2.9100 -3.9472

C
ar

d
io

2 -0.0100 -0.1734 -0.1376 0.1248
3 -0.0002 -0.1656 -0.1691 0.2175 0.1361
4 0.0798 -0.0173 -0.0460 0.1776 0.0694 0.1041
5 0.0019 0.0507 -0.1204 0.1929 -0.0075 -0.0414 0.1165
6 0.0669 0.0790 -0.1726 0.1489 -0.0189 -0.0855 0.1239 0.1228
7 0.0478 0.2919 -0.5498 0.6146 -0.5902 0.3795 -0.2737 0.5444 -0.2306

R
es

p
ir

2 -0.0755 -0.0463 -0.1646 0.0753
3 -0.2908 -0.0999 -0.0267 -0.1356 0.1684
4 -0.2154 0.0979 -0.0734 -0.1606 0.0049 0.1991
5 -0.1814 0.1621 -0.1135 -0.0247 -0.1007 0.1233 0.1254
6 -0.3011 0.2987 -0.1910 -0.0469 -0.0848 0.0193 0.3140 -0.0500
7 0.5446 -1.2545 2.3197 -4.8543 8.8840 -12.7975 21.9974 -39.332 71.547

D
ig

es
t

2 -0.0551 0.2117 0.1161 0.1137
3 -0.1091 0.2205 0.1150 0.1616 0.0551
4 -0.1716 -0.3202 0.3934 0.0934 0.1370 0.0341
5 0.2144 -0.4541 0.8081 -0.2726 0.2440 -0.0605 -0.1054
6 0.5413 -0.1750 0.7790 -0.3744 -0.2197 -0.5083 0.1391 0.0136
7 0.9519 -0.2507 1.0648 -0.7386 0.6054 -2.7973 3.2996 -5.0791 8.5674

S
k
in

2 0.0471 -0.0571 0.4519 0.0206
3 0.1728 0.1168 0.1228 -0.1468 0.2507
4 0.3328 0.0503 0.1193 -0.3386 0.6572 -0.0976
5 0.1936 0.2742 0.0687 -0.2924 0.3033 0.3883 -0.2598
6 0.3286 0.2666 -0.2056 0.1589 -0.0599 0.6005 -0.4069 0.6669
7 12.637 -305.45 -7145.1 -1.67E5 -3.91E6 -9.15E7 -2.14E9 -5.0E10 -1.2E12

In
fe

ct
iv

e

2 -0.1897 -0.1879 -0.1333 -0.0258
3 -0.0914 -0.0571 -0.0503 -0.0812 0.0577
4 -0.0827 -0.1746 -0.1014 -0.1737 0.0152 0.0112
5 -0.1759 -0.0614 -0.0607 -0.1163 -0.1939 -0.2660 0.2560
6 -0.2465 0.2277 -0.0791 -0.0229 -0.6192 -0.6317 0.3781 1.6364
7 -0.2106 0.2351 -0.0991 0.1660 -0.5445 -0.4615 0.3083 0.9368 0.9755
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Figure 6: Cumulative Direct and Autoregressive Effects of Log of Annual Changes
in Federal Grants, on Private R&D of PhRMA members, by Therapeutic Category.
(Each line shows the cumulative change at each stage in a regression with a given
number of lags; the number of lags is shown by the extent of the line. Thus, each
chart has a line with three lags, a line with four lags, and so on.)
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combinations of other variables, including GDP, drug sales (by category), and category and

year dummy variables to control for fixed effects. These results show the same pattern in

the coefficients as those without the control variables, indicating that the profile of negative

short-run effects and positive long-run effects is not driven by these other variables. In fact,

estimates of the regression coefficients are only slightly affected by including these other

variables. This may be seen clearly in the plots shown in Figure 7.

In order to quantify the significance of the ‘
⋃

-shaped” pattern of coefficients, Table 9

shows the t-statistics for test of the null hypothesis that the cumulative effect of a change

in PhRMA spending is linear over time, against the alternative that the cumulative effect is

lower in the short run than the long-run linear trend. The idea here is that in the absence

of crowding-out in the short run, the sum of the first k lag coefficients in a regression with

n lags, will be about k/n of the sum of all n lag coefficients. Relative crowding-out in the

shorter lags is indicated by negative t-statistics for the corresponding coefficient sums.

The pattern of effects of grants on private spending is not present in the pattern of

effects of drug sales on private spending, as one can see immediately from the results in

Table 10 and Figure 8. Indeed, in the early years (short lags), the effect of sales on private

research is the opposite of the effect of grants. The effect of sales is positive in the first

three years and negative in the fourth year. This pattern holds whether or not we control

for grants, GDP, and category and year fixed effects. From this, we may conclude that

the ‘
⋃

-shaped” pattern of short-run substitution and long-run complementarity is driven by

federal grants and not drug sales.

Next, we wish to rule out the possibility that the “
⋃

-shaped” pattern of coefficients

is the result of some omitted variable driving all sorts of federal support for research (rather

than just in-category medical research) and perhaps private research as well. To do this,

non-medical federal R&D spending was obtained by subtracting total federal spending on

medical research from total federal R&D spending, as reported by the National Science
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Table 7: Regression Results: Determinants of PhRMA R&D Spending

Dependent Variable: PhRMAit = PhRMA R&D in disease category j in year t (log changes)

Independent
Variable Coef. (t-stat.) Coef. (t-stat.) Coef. (t-stat.)
Intercept 0.1875 (2.41E-7) 0.0946 (1.6002) 0.0727 (1.4207)
log GDPt

GDPt−1

-0.3226 (-3.04E-8) 0.1676 (0.5104) 0.2100 (0.6435)

GRANTSt -0.0155 (-0.1001) -0.1030 (-1.1195) -0.1359 (-1.6777)
GRANTSt−1 -0.2698 (-1.7907) -0.2380 (-2.8934) -0.2617 (-3.4070)
GRANTSt−2 0.1569 (1.0240) 0.1999 (2.1082) 0.1639 (2.0469)
GRANTSt−3 0.0321 (0.2019) 0.0862 (0.8925) 0.0624 (0.7021)
GRANTSt−4 0.1569 (0.9551) 0.1242 (1.1568) 0.0923 (1.0083)
GRANTSt−5 0.1334 (1.2367) 0.1208 (1.4286) 0.0818 (1.0409)
GRANTSt−6 0.0159 (0.1486) -0.0748 (-0.9271) -0.0836 (-1.0442)
GRANTSt−7 -0.0119 (-0.1166) -0.0338 (-0.4104) -0.0559 (-0.7057)
SALESt -0.1501 (-0.7219) -0.0609 (-0.3444) -0.1069 (-0.6149)
SALESt−1 0.1173 (0.5572) 0.0034 (0.0181) -0.0055 (-0.0299)
SALESt−2 0.2340 (1.1226) 0.2866 (1.5895) 0.2694 (1.5073)
SALESt−3 0.2120 (1.0193) 0.2693 (1.5005) 0.2593 (1.4658)
SALESt−4 -0.2108 (-0.9876) -0.2094 (-1.1321) -0.1945 (-1.0670)
SALESt−5 0.0059 (0.0275) 0.0464 (0.2399) 0.0611 (0.3310)
SALESt−6 -0.4706 (-2.1543) -0.4779 (-2.4466) -0.4804 (-2.5706)
SALESt−7 -0.0197 (-0.0896) 0.0622 (0.3219) 0.0830 (0.4617)

Category Dummy Variables:
Nervous -0.0016 (-0.0336) -0.0055 (-0.1241)
Cardio -0.0068 (-0.1270) -0.0215 (-0.4321)
Respir 0.0137 (0.2931) 0.0076 (0.1719)
Digest -0.0588 (-1.2396) -0.0654 (-1.4538)
Skin -0.0630 (-1.3174) -0.0603 (-1.3487)
Infective -0.0540 (-0.9137) -0.0565 (-1.0916)

Year Dummy Variables:
1979 -0.0188 (-1.44E-8)
1980 -0.0576 (-5.66E-8)
1981 0.0448 (3.20E-8)
1982 -0.0259 (-5.18E-8)
1983 -0.0427 (-1.19E-7)
1984 -0.0447 (-5.65E-8)
1985 0.0605 (1.75E-7)
1986 -0.0568 (-5.16E-7)
1987 -0.0125 (-1.26E-7)
1988 0.0280 (7.90E-8)
1989 -0.0318 (-7.58E-8)
1990 -0.0568 (-2.27E-7)
1991 -0.0170 (-3.54E-7)
1992 -0.0538 (-2.45E-6)
1993 -0.1353 (-2.66E-6)
1994 -0.0888 (-1.22E-6)
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Table 8: Cumulative Effect of a Change in Federal Grants on Private R&D,
(Controlling for drug sales, GDP, and category and year fixed effects)

Dependent Variable: PhRMAit = PhRMA R&D in disease category j in year t (log changes)

Independent
Variables

Cumulative effect of GRANTS

(Each cell contains the log-change in PhRMAjt, k periods after a unit
log-change in GRANTS j,t−k, implied by a regression with the checked
independent variables, calculated by summing the regression coefficients
of GRANTS jt, . . . ,GRANTS j,t−k.)

S
A

L
E
S

a

G
D

P
b

C
at

eg
or

y
c

Y
ea

rd

0 1 2 3 4 5 6 7√ √ √ √
-0.0155 -0.2853 -0.1283 -0.0963 0.0607 0.1941 0.2100 0.1981√ √ √
-0.1030 -0.3410 -0.1411 -0.0549 0.0694 0.1901 0.1153 0.0815√ √
-0.1359 -0.3975 -0.2337 -0.1713 -0.0791 0.0028 -0.0808 -0.1367√ √
-0.1074 -0.3444 -0.1430 -0.0525 0.0698 0.1949 0.1333 0.1117√
-0.1428 -0.4042 -0.2400 -0.1734 -0.0850 0.0010 -0.0662 -0.1075√ √
-0.1069 -0.3541 -0.1934 -0.1395 -0.0949 0.0165 -0.0803 -0.1325√
-0.1120 -0.3602 -0.2015 -0.1448 -0.1030 0.0107 -0.0734 -0.1141√
-0.1189 -0.3741 -0.2233 -0.1757 -0.1405 -0.0468 -0.1481 -0.2075

aEach regression checked includes log changes of current and 7 lagged values of drug sales for
each category.

bEach regression checked includes log changes of GDP.
cEach regression checked includes category dummy variables.
dEach regression checked includes year dummy variables.
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Figure 7: Upper plot: Cumulative predicted percent change in Private (PhRMA)
R&D in a category, corresponding to a one-time +1% change in Federal Research
Grants in that same category, controlling for the variables indicated.
Lower plot: Regression coefficients of Federal Research Grants used to generate
cumulative predicted percent change in the upper plot. See Equation 4 on page 68
for the functional form of the regressions.
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Table 9: Hypothesis Tests of Cumulative Effects of Changes in Federal Grants

Yjt = a +

k
∑

i=0

biXj,t−i + h(other variables)

“Other variables” include category drug sales (lagged 0 through 7 periods), category dummy variables, and
year dummy variables where noted.

This is a test of the null hypothesis that effect of federal grants propogates linearly, against the
alternative that the cumulative effect after k years is less than k/8 of the effect over 8 years.

H0 :

k
∑

i=0

biXj,t−i =
1

k

7
∑

i=0

biXj,t−i

HA :

k
∑

i=0

biXj,t−i <
1

k

7
∑

i=0

biXj,t−i

Regressions Including Year dummy variables:

Sum of Standard Avg. Growth
k k Coef’s. Error of Coef. Sum t-stat
0 -0.0155 0.1547 0.0248 -0.2602
1 -0.2853 0.2110 0.0495 -1.5865
2 -0.1283 0.2737 0.0743 -0.7403
3 -0.0963 0.3286 0.0991 -0.5944
4 0.0607 0.4131 0.1238 -0.1529
5 0.1941 0.4527 0.1486 0.1005
6 0.2100 0.4573 0.1734 0.0802

Regressions Without Year dummy variables:

Sum of Standard Avg. Growth
k k Coef’s. Error of Coef. Sum t-stat
0 -0.1030 0.0920 0.0102 -1.2302
1 -0.3410 0.1336 0.0204 -2.7044
2 -0.1411 0.1973 0.0306 -0.8698
3 -0.0549 0.2437 0.0408 -0.3924
4 0.0694 0.3061 0.0509 0.0602
5 0.1901 0.3437 0.0611 0.3753
6 0.1153 0.3466 0.0713 0.1270
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Table 10: Cumulative Effect of a Change in Drug Sales on Private R&D,
(Controlling for Grants, GDP, and category and year fixed effects)

Dependent Variable: PhRMAit = PhRMA R&D in disease category i in year t (log changes)

Independent
Variables

Cumulative effect of SALES

(Each cell contains the log-change in PhRMAit, k periods after a unit
log-change in SALES i,t−k, implied by a regression with the checked
independent variables, calculated by summing the regression coefficients
of SALES t, . . . ,SALES t−k.)

S
A

L
E
S

a

G
D

P
b

C
at

eg
or

y
c

Y
ea

rd

0 1 2 3 4 5 6 7√ √ √ √
-0.1501 -0.0327 0.2013 0.4133 0.2025 0.2084 -0.2622 -0.2820√ √ √
-0.0609 -0.0575 0.2291 0.4984 0.2890 0.3353 -0.1426 -0.0803√ √
-0.1069 -0.1123 0.1571 0.4163 0.2218 0.2829 -0.1975 -0.1144√ √
-0.0433 -0.0293 0.2523 0.5204 0.3034 0.3524 -0.1260 -0.0751√
-0.0848 -0.0765 0.1864 0.4444 0.2414 0.3078 -0.1716 -0.1002

aEach regression includes log changes of current and 7 lagged values of drug sales for each
category.

bEach regression checked includes log changes of GDP.
cEach regression checked includes category dummy variables.
dEach regression checked includes year dummy variables.
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Figure 8: Upper plot: Cumulative predicted percent change in Private (PhRMA)
R&D in a category, corresponding to a one-time +1% change in Pharmaceutical
Sales in that same category, controlling for the variables indicated.
Lower plot: Regression coefficients of Pharmaceutical Sales used to generate cumu-
lative predicted percent change in the upper plot. See Equation 4 on page 68 for
the functional form of the regressions.
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Table 11: Cumulative Effect of a Change in Federal Grants on Private R&D,
(Controlling for drug sales, GDP, and category and year fixed effects)

Dependent Variable: PhRMAit = PhRMA R&D in disease category i in year t (log changes)

Independent
Variables

Cumulative effect of NonMed

(Each cell contains the log-change in PhRMAit, k periods after a unit
log-change in NonMed t−k, implied by a regression with the checked
independent variables, calculated by summing the regression coefficients
of NonMed t, . . . ,NonMed t−k.)

N
o
n
M

ed
a

S
A

L
E
S

b

C
at

eg
or

y
c

0 1 2 3 4 5 6 7√ √ √
-0.8607 -0.0321 1.6718 0.8551 -0.1601 0.0732 0.4733 0.5999√
-1.0576 -0.0990 1.7048 0.6208 -0.3377 -0.0331 0.3779 0.6885

aEach regression includes log changes of current and 7 lagged values of federal non-
medical R&D spending.

bEach regression checked includes log changes of current and 7 lagged values of drug sales
for each category.

cEach regression checked includes category dummies. Even though there are no categories
for NonMed , there are categories for SALES and for the dependent variable PhRMA.

Foundation (NSF, 2000). Then, total non-medical federal research expenditures replaced

the federal grants for medical research as the independent variable in regression (4).

The results are shown in Table 11 and Figure 9. The obvious absence of the same

“
⋃

-shaped” pattern of coefficients of non-medical federal research spending indicates that

the pattern is not the result of some other factor driving all research spending.

Attempting to use instrumental variables to check for serial correlation in the residuals

was impractical due to the lack of suitable instruments. All reasonable candidates proved to

be uncorrelated with the independent variables.

8.4 Medical Research and Drug Sales

Of course, research expenditure, whether by a private or public entity, benefits consumers

only when it results in production of useful new goods or services. While the connection
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Figure 9: Upper plot: Cumulative predicted percent change in Private (PhRMA)
R&D in a category, corresponding to a one-time +1% change in Non-Medical Federal
R&D, controlling for the variables indicated.
Lower plot: Regression coefficients of Federal Non-Medical R&D used to generate
cumulative predicted percent change in the upper plot. See Equation 4 on page 68
for the functional form of the regressions.
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between specific research projects and specific new products is often difficult to discern (espe-

cially for basic research), it should be the case that increases in overall research effort should

eventually lead to increased consumption of related goods. Research by pharmaceutical com-

panies should lead to new drugs, an outcome that may well be observable as increases in

total drug sales in a particular therapeutic category.35 In addition, if government-sponsored

research is of ultimate economic benefit, increases in government research funding in a par-

ticular category may eventually show up as an increase in drug sales in that category.36

Running distributed-lag and VAR regressions with the dollar value of drug sales as the

dependent variable and federal and private research spending (separately) as the independent

variables allows examination of this effect. The forms of these regressions are the same as in

(2) and (3), but with yt as the dollar value of drug sales in year t, and xt as the amount of

public grants or private R&D expenditures, respectively.

Figure 10 shows log-changes of drug sales and federal research spending for each ther-

apeutic category, and Figure 11 shows log-changes of drug sales and private R&D spending

for each therapeutic category. Table 12 shows results of the distributed lag regressions with

yt as the dollar value of drug sales in year t and xt as federal research spending, and Table 13

shows comparable results with xt as PhRMA research spending. Figure 12 illustrates the

cumulative response of drug sales in each category to a unit change in federal grants and

(separately) a unit change in PhRMA spending in that category. Note that, as we would

expect, the magnitude of the apparent effect for both types of R&D spending is small in

the short run, and large in the long run. However, for some categories the long-run effects

are large and negative rather than large and positive. This is the case for both grants and

PhRMA spending in two categories and for PhRMA spending in a third category as well.

35 But not necessarily, since new drugs may simply replace older drugs they render obsolete.
36 Unfortunately, for reasons described on p. 49, there is not perfect correlation between the disease

category in which research is classified and the therapeutic category in which sales of the resulting drug is
classified.

81



Year

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

-0
.2

0.
0

0.
2

0.
4

0.
6

Neoplasm

Grants          
Drug Sales          

Year

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

-0
.2

0.
0

0.
2

0.
4

Central Nervous System

Grants          
Drug Sales          

Year

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

-0
.2

0.
0

0.
1

0.
2

0.
3

Cardiovascular

Grants          
Drug Sales          

Year

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

-0
.2

0.
0

0.
2

0.
4

0.
6

Respiratory

Grants          
Drug Sales          

Year

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

-0
.2

0.
2

0.
6

1.
0

Digestive/Genitourinary

Grants          
Drug Sales          

Year

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

-0
.4

0.
0

0.
2

0.
4

0.
6

Skin

Grants          
Drug Sales          

Year

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

-0
.2

0.
0

0.
2

0.
4

0.
6

Infective/Parasitic

Grants          
Drug Sales          

Figure 10: Log of Annual Changes in Federal Grants, and
Pharmaceutical Sales, by Therapeutic Category.
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Figure 11: Log of Annual Changes in Private R&D of PhRMA
members, and Pharmaceutical Sales, by Therapeutic Category.
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Table 12: Distributed Lag Regressions of Sales on Grants, Sum of Coefficients

Dependent Variable: Y = Shipments of Pharmaceuticals (log changes)
Independent Variable: X = Federal Grants, by disease category (log changes)

(Each cell contains the sum of coefficients for the regression with the given number of lags.)
Lags
of X

Neoplasm Nervous Cardio Respir Digest Skin Infective Lag Avg.

0 -0.0151 -0.0876 0.1586 -0.0467 -0.0133 -0.0335 0.0347 -0.0004
1 -0.0826 -0.1103 0.2283 -0.0148 -0.0775 -0.0480 0.1982 0.0133
2 -0.0921 -0.0220 0.2686 -0.0745 -0.1885 -0.0768 0.2983 0.0161
3 -0.2806 -0.0695 0.3000 -0.0618 -0.2594 -0.1030 0.4147 -0.0085
4 -0.3314 -0.2872 0.3025 -0.2752 -0.5096 -0.0994 0.4367 -0.1091
5 -0.2005 -0.3959 0.7243 -0.1225 -0.8496 0.0578 0.6751 -0.0159
6 -0.1168 -0.5538 0.8984 0.2123 -0.0419 0.1558 0.0594 0.0876
7 -0.7604 -0.6579 1.5935 0.2462 2.4307 -0.0366 1.2542 0.5814

Sum -1.8796 -2.1841 4.4743 -0.1369 0.4909 -0.1837 3.3713 0.5646
Wt. Avg.a -0.0522 -0.0607 0.1243 -0.0038 0.0136 -0.0051 0.0936 0.0157

Avg.b -0.2349 -0.2730 0.5593 -0.0171 0.0614 -0.0230 0.4214

aThe average cumulative response, weighted by number of coefficients; or equivalently, the average coefficient.

bThe average cumulative response over the eight regressions; i.e., each regression has equal weight.

Table 13: Distributed Lag Regressions of Sales on Private R&D, Sum of Coefficients

Dependent Variable: Y = Shipments of Pharmaceuticals (log changes)
Independent Variable: X = PhRMA Corporate R&D, by disease category (log changes)

(Each cell contains the sum of coefficients for the regression with the given number of lags.)
Lags
of X

Neoplasm Nervous Cardio Respir Digest Skin Infective Lag Avg.

0 0.0141 0.0055 0.3598 -0.0250 -0.0980 0.0288 0.1693 0.06493
1 -0.1550 0.0100 0.6439 0.1648 0.1049 0.0804 0.2537 0.15752
2 -0.0612 -0.1942 0.8156 0.2128 0.1756 -0.0584 0.4354 0.18937
3 -0.2125 -0.2371 0.7815 0.3658 0.0795 -0.0347 0.4427 0.16933
4 -0.4701 -0.2705 0.7529 0.3567 0.2290 0.3125 0.6641 0.22494
5 -1.1708 -0.4663 0.6550 0.3161 1.2158 -0.0416 0.2515 0.10852
6 -1.6135 -0.6936 0.4646 0.9625 1.1020 0.5136 -2.1847 -0.20703
7 -2.4096 -0.8243 0.4366 2.2342 2.0070 0.2051 -2.5360 -0.12671

Sum -6.0786 -2.6706 4.9099 4.5879 4.8159 1.0055 -2.5040 0.58086
Wt. Avg.a -0.1689 -0.0742 0.1364 0.1274 0.1338 0.0279 -0.0696 0.01614

Avg.b -0.7598 -0.3338 0.6137 0.5735 0.6020 0.1257 -0.3130

aThe average cumulative response, weighted by number of coefficients; or equivalently, the average coefficient.

bThe average cumulative response over the eight regressions; i.e., each regression has equal weight.
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Figure 12: Cumulative predicted percent change in drug sales corresponding to a
one-time +1% change in R&D, by therapeutic category. In each plot, the solid line
represents the response to a change in federal research grants, and the dashed line
the response to a change in private (PhRMA) R&D.
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The presence of negative effects of R&D spending on sales bears further investigation. It is

quite likely, given the length of time it takes to do research and the lengthy regulatory pro-

cess required to bring a drug to market, that the true effect of R&D spending on drug sales

is not seen in the first seven years after the research dollars are spent. Unfortunately, with

only 25 years’ worth of data, it is not possible to study such long-term effects adequately. It

is possible to drop early lag terms from the regression, but extending the lag structure back

much farther would result in the loss of too many degrees of freedom.

Table 14 shows the results of VAR simulations and F -tests for the same data, and

Figure 13 displays plots of the direct and VAR effects of an increase in federal research

spending in one year on drug sales in subsequent years. Likewise, Table 15 lists the results

of VAR simulations and F -tests for the same data, and Figure 14 contains plots of the average

effect of an increase in private R&D spending in one year on drug sales in subsequent years.

Compared with regressions in which private R&D is the dependent variable, regres-

sions with pharmaceutical sales as the dependent variable are less conclusive, but still some-

what interesting. The distributed lag regressions show a negative effect of grants on sales for

five of the seven categories for zero through four lags, but three of these five turn positive by

the seven-lag regressions. The other two are positive for all (zero through seven) lags. With

private rather than government research as the independent variable, more coefficients are

positive, but there is no clear pattern. (The proportion of negatives and positives is roughly

the reverse of that with government research as the independent variable.) As noted above,

one possible reason for this is that the effect of research on sales probably has much longer

lags.

86



Table 14: Simulation of Direct and VAR Effects of Log of Annual Changes in Federal Grants
on Pharmaceutical Sales.

(Each cell contains the change in Yt, t periods after a unit log-change in X, implied by the regression with
k lags of X and k − 1 lags of Y .)

t
k 0 1 2 3 4 5 6 7 8

N
eo

p
la

sm

2 0.0340 0.1250 0.1298 0.1053
3 -0.0604 0.1189 0.2083 0.0669 0.0644
4 0.1953 0.4510 0.1254 -0.0492 0.2123 0.2163
5 0.2516 0.2526 0.0924 0.1385 0.0873 -0.0208 0.0442
6 0.3893 0.4197 0.1465 0.3568 0.3965 -0.1860 -0.5788 -0.1161
7 0.9249 0.6957 0.7526 1.0263 1.8112 0.5771 -1.0959 0.0865 0.7371

N
er

vo
u
s

2 -0.1099 -0.1151 -0.0140 -0.0629
3 -0.1017 -0.1183 -0.0178 -0.1029 -0.0970
4 -0.1511 -0.1735 -0.0892 -0.1040 -0.2153 -0.1566
5 -0.2053 -0.2589 -0.2097 -0.1553 -0.2327 -0.1448 -0.1970
6 -0.1454 -0.2970 -0.1805 -0.2413 -0.2562 -0.1590 -0.1386 -0.1991
7 0.2918 -0.2602 -0.0251 0.0046 -0.5939 -0.2023 -0.5246 0.6894 -0.1323

C
ar

d
io

2 -0.0038 0.0521 -0.0182 0.0578
3 -0.0038 0.0511 -0.0172 -0.0938 0.0907
4 0.0090 0.1287 -0.0997 -0.0927 -0.0983 0.1733
5 0.0365 0.2961 0.0736 0.0980 -0.2123 -0.1729 0.1790
6 0.2006 0.2212 0.1317 0.1131 -0.0565 -0.2127 -0.1327 0.1319
7 0.0335 0.1257 0.1047 -0.4162 -0.0014 0.5199 -0.5513 0.1740 1.2105

R
es

p
ir

2 0.0153 0.2746 0.0138 0.1056
3 -0.0769 0.2382 0.0248 0.1836 0.1114
4 -0.0848 0.1864 -0.1085 0.2478 0.0227 0.1599
5 -0.0466 0.2873 -0.1536 0.2122 -0.0975 -0.0337 0.1162
6 0.0143 0.2366 -0.1182 0.2261 -0.0085 0.0197 0.1854 -0.0153
7 -0.3165 0.1710 -0.0624 2.2143 -2.6741 -5.6777 10.867 11.9494 -35.532

D
ig

es
t

2 -0.0342 0.0161 -0.0346 0.0310
3 -0.0417 0.00043 -0.0426 0.0022 0.0383
4 -0.0597 -0.1776 -0.1048 -0.0058 0.0281 0.0503
5 -0.0363 -0.0634 -0.0600 0.0183 0.0799 0.0111 0.1166
6 0.4548 0.2948 0.1151 0.1673 0.2209 0.3419 0.1271 0.0710
7 0.7910 0.2417 0.8631 0.7027 0.9661 -0.3133 -0.6185 0.4951 -0.1931

S
k
in

2 -0.0988 -0.1596 -0.0991 -0.0973
3 -0.1060 -0.2322 -0.1104 -0.0955 -0.1396
4 -0.1028 -0.2337 -0.1040 -0.0741 -0.1339 -0.1380
5 -0.0916 -0.1899 -0.1337 -0.0571 -0.1109 0.0500 -0.1088
6 -0.0731 -0.2186 -0.1256 -0.0636 -0.1369 0.0588 -0.0167 -0.1746
7 -0.0852 -0.5632 -0.2924 -0.2770 -0.0766 0.1352 0.0648 -0.4410 -0.6472

In
fe

ct
iv

e

2 0.0767 0.1256 0.0412 0.0072
3 0.0412 0.0813 0.0138 0.0444 -0.0084
4 0.0720 0.1133 0.0311 0.0384 -0.0195 -0.0299
5 0.1321 0.2531 0.1629 0.1652 0.0451 0.1149 -0.0636
6 0.0840 0.1431 0.1638 0.0508 -0.0456 -1.6E-4 -0.0639 -0.1600
7 0.1455 0.4090 0.5087 0.3058 0.1463 0.2340 0.3967 -0.6934 -0.4365
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Figure 13: Simulation of Direct and VAR Effects of Log of Annual Changes in
Federal Grants, on Drug Sales, by Therapeutic Category.
(Each line shows the cumulative change at each stage in a regression with a given
number of lags; the number of lags is shown by the extent of the line. Thus, each
chart has a line with three lags, a line with four lags, and so on.)
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Table 15: Simulation of Direct and VAR Effects of Log of Annual Changes in Private R&D
on Pharmaceutical Sales.

(Each cell contains the change in Yt, t periods after a unit log-change in X, implied by the regression with
k lags of X and k − 1 lags of Y .)

t
k 0 1 2 3 4 5 6 7 8

N
eo

p
la

sm

2 -0.0914 -0.1560 0.0019 0.0177
3 -0.0105 -0.0103 0.0736 -0.1014 -0.0645
4 -0.1262 -0.2123 -0.2198 -0.3070 -0.1406 -0.0009
5 -0.1285 -0.1955 -0.1058 -0.1990 -0.1634 -0.2805 -0.1433
6 0.0019 -0.0327 -0.0395 -0.0844 -0.0340 -0.3474 -0.2431 0.1092
7 0.2744 -0.0064 0.2404 -0.7645 0.9587 -2.2381 2.6067 -5.1732 9.7175

N
er

vo
u
s

2 0.0175 0.0812 -0.1975 -0.0767
3 0.0391 0.0728 -0.1621 -0.0981 -0.0378
4 0.0062 0.0057 -0.1923 -0.1522 0.0696 0.0331
5 0.1282 0.0840 -0.0902 -0.1433 -0.1708 -0.5156 -0.0730
6 -0.0557 -0.2495 -0.4054 0.1123 0.1853 -0.4582 0.0907 0.1227
7 -0.5103 -0.6220 -0.1842 -0.0343 0.6602 -0.1409 0.0514 0.0444 -0.6569

C
ar

d
io

2 0.0934 0.4794 0.3042 0.0274
3 0.1563 0.4458 0.3395 -0.0928 0.0388
4 0.3141 0.4522 0.3919 -0.1634 0.0110 -0.1440
5 0.2765 0.6192 0.4091 -0.2089 0.0550 -0.3582 0.0718
6 0.2399 0.5946 1.0801 -1.1658 0.8753 -1.4580 1.2736 -1.7544
7 1.0276 -2.4204 11.8703 -43.486 164.20 -624.02 2366.1 -8972.5 3.40E4

R
es

p
ir

2 0.0122 0.0753 -0.0297 -0.0631
3 -0.0132 0.0984 -9.0968 0.1335 -0.0209
4 -0.0391 0.0960 -0.0222 0.1139 -0.0744 -0.0710
5 -0.1769 -0.2387 -0.0267 0.2287 0.2034 0.0607 -0.2660
6 -0.2898 -0.3827 -0.2066 -0.1134 -0.3095 -0.8534 -1.2032 -1.4934
7 -13.818 -210.41 -3005.6 -4.30E4 -6.16E5 -8.81E6 -1.26E8 -1.81E9 -2.6E10

D
ig

es
t

2 -0.0434 0.3184 0.0450 0.1375
3 -0.0578 0.3767 -0.0654 -0.0530 0.1853
4 -0.1101 0.4826 -0.1827 -0.1341 0.1212 0.2396
5 -0.1315 0.6564 -0.4576 0.1157 0.1679 0.7307 -0.3429
6 0.1327 0.5955 -0.3748 -0.1707 0.6426 0.7012 0.0205 -0.4967
7 0.2777 0.5359 1.0629 1.3391 3.4229 4.9002 5.6947 8.3283 11.331

S
k
in

2 -0.0148 0.0226 -0.1018 -0.0018
3 -0.0509 0.0031 -0.1281 -0.0349 0.0041
4 0.1381 0.3593 0.3100 0.6857 0.9744 0.7715
5 -0.0435 0.0058 -0.3637 -0.2427 -0.1014 -0.4277 0.2192
6 -0.0418 0.0770 -0.3073 -0.1141 0.0446 -0.3929 0.2330 -0.0028
7 0.0213 -0.4530 -1.0431 -1.0053 -1.5809 -1.7191 -0.0341 2.7344 6.9342

In
fe

ct
iv

e

2 0.1988 -0.0469 0.0900 -0.0028
3 0.2399 -0.0186 0.0281 -0.0819 -0.0928
4 0.2447 0.0216 0.1012 -0.1646 0.0800 -0.0622
5 0.0698 -0.2208 0.1008 -0.2327 -0.1811 -0.2700 -0.3432
6 -0.2370 -0.8207 -0.3540 -0.0761 -0.7344 -0.5896 -0.9846 -0.9006
7 -0.1579 -0.9906 -0.2746 -0.0596 -0.6801 -0.5073 -0.6778 -1.0273 -0.9447
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Figure 14: Simulation of Direct and VAR Effects of Log of Annual Changes in
Private R&D, on Drug Sales, by Therapeutic Category.
(Each line shows the cumulative change at each stage in a regression with a given
number of lags; the number of lags is shown by the extent of the line. Thus, each
chart has a line with three lags, a line with four lags, and so on.)
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9 Conclusion

Due to the uncertainty inherent in research activity and the fact that the research output

may be imperfectly appropriable, the private sector might in equilibrium provide suboptimal

levels of innovative effort, particularly in areas of basic research. One possible solution to

this problem is for government to provide subsidies for basic research, in the hope that the

increased stock of basic scientific knowledge that results will stimulate the private sector to

increase its investment in more-appropriable applied research, and thus ultimately stimulate

private-sector innovation. However, since basic research is at least partly appropriable and

because research inputs are inelastically supplied, government funding of basic research may

in fact crowd out private research.

Based on an analysis of data on public funding of biomedical research and private-

sector funding of R&D in the pharmaceutical industry, one finds that increases in government

research funding appear to crowd out private R&D in the short run, but stimulate private

R&D in the long run. Because there is a time lag between funding of basic research and

utilizing the results, this finding is consistent with a theory that government funding crowds

out private basic research but stimulates private applied research.

The crowd-out effect is more pronounced when expenditures are deflated to constant

dollars using the Biomedical Research and Development Price Index (BRDPI), relative to

the effect observed when using current dollars, or constant dollars according to the GDP

deflator. This is consistent with the observation that R&D inputs, particularly the services

of scientific personnel, are inelastically supplied; therefore, research subsidies increase the

price of research for private firms and thus directly crowd out private R&D.
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Thérien, M.; Vickers, P.; Wong, E.; Xu, L.-J.; Young, R. N.; Zamboni, R.; Boyce,
S.; Rupniak, N.; Forrest, M.; Visco, D.; and Patrick, D., “The discovery of ro-
fecoxib, [MK 966, Vioxx, 4-(4’-methylsulfonylphenyl)-3-phenyl-2(5H)-furanone], an
orally active cyclooxygenase-2 inhibitor,” Bioorganic & Medicinal Chemistry Letters

9(13): 1773–1778 (July 5, 1999).

Reaves, Natalie D., Pharmaceutical Innovation and Orphan Drugs: The Effects of the

1983 Orphan Drug Act, Ph.D. thesis, Wayne State University (1995).

Romer, Paul M., “Endogenous Technological Change,” Journal of Political Economy

98(no. 5, pt. 2): S71–S102 (October 1990).

Shadid, Anthony, “US Funding Tilts Science Landscape,” Boston Globe (2001).

Simmons, Daniel L.; Botting, Regina M.; Robertson, Philip M.; Madsen, Matthew L.;
and Vane, John R., “Induction of an acetaminophen-sensitive cyclooxygenase with
reduced sensitivity to nonsteroid antiinflammatory drugs,” Proceedings of the Na-

tional Academy of Sciences USA 96(6): 3275–3280 (March 16, 1999).

Simmons, Daniel L.; Levy, Daniel B.; Yannoni, Yvonne; and Erikson, R. L., “Identifica-
tion of a phorbol ester-repressible v-src-inducible gene,” Proceedings of the National

Academy of Sciences USA 86: 1178–1182 (February 1989).

Simmons, Daniel L.; Wagner, David; and Westover, Kenneth, “Nonsteroidal Anti-
Inflammatory Drugs, Acetaminophen, Cyclooxygenase 2, and Fever,” Clinical In-

fectious Disease 31(Suppl 5): S211–8 (2000).

Smith, J. B. and Willis, A. L., “Aspirin selectively inhibits prostaglandin production in
human platelets,” Nature New Biology 231: 235–237 (1971).

Sobel, Dava, Longitude: The True Story of a Lone Genius Who Solved the Greatest

Scientific Problem of His Time, New York: Walker, 1995.

Stern, Scott, “Do Scientists Pay to Be Scientists?” NBER Working Paper No. W7410
(October 1999).

Stone, Edward, “An account of the success of the bark of the willow in the cure of agues,”
Philosophical Transactions of the Royal Society of London 53: 195–200 (June 2,
1763).

Sud, Sumeet, Merck & Co., Inc., Personal communications (1998–2001).

97



Tassey, Gregory, “Choosing Government R&D Policies: Tax Incentives vs. Direct Fund-
ing,” Review of Industrial Organization 11(5): 579–600 (October 1996).

Tassey, Gregory, The Economics of R&D Policy, Westport, CT: Quorum, 1997.

Thomas, Lacy Glenn, “Regulation and Firm Size: FDA impacts on innovation,” RAND

Journal of Economics 21(4): 497–517 (Winter 1990).

Vane, John R., “Inhibition of prostaglandin synthesis as a mechanism of action for
aspirin-like drugs,” Nature New Biology 231: 232–235 (1971).

Vane, John R. and Botting, Regina M., “Mechanism of Action of Nonsteroidal Anti-
Inflammatory Drugs,” The American Journal of Medicine 104(3A): 2S–8S (March
30 1998).

Wallsten, Scott J., “The effects of government-industry R&D programs on private R&D:
the case of the Small Business Innovation Research program,” RAND Journal of

Economics 31(1): 82–100 (Spring 2000).

Ward, Michael R. and Dranove, David, “The Vertical Chain of Research and Devel-
opement in the Pharmaceutical Industry,” Economic Inquiry 33(1): 70–87 (January
1995).

Wiggins, Steven N., “The Pharmaceutical Research and Development Decision Pro-
cess,” in Robert B. Helms, ed., Drugs and Health: Economic Issues and Policy

Objectives, Washington, DC: AEI, 1981a, pp. 55–83.

Wiggins, Steven N., “Product Quality Regulation and New Drug Introductions: Some
New Evidence from the 1970s,” Review of Economics and Statistics 63(4): 615–619
(November 1981b).

Wiggins, Steven N., “The Impact of Regulation on Pharmaceutical Research Expendi-
tures: A Dynamic Approach,” Economic Inquiry 21(1): 115–128 (January 1983).

Willoughby, Derek A.; Moore, Adrian R.; and Colville-Nash, Paul R., “COX-1, COX-
2, and COX-3 and the future treatment of chronic inflammatory disease,” Lancet

355: 646–648 (February 19, 2000).

Wright, Donald J., “Optimal patent breadth and length with costly imitation,” Inter-

national Journal of Industrial Organization 17(3): 419–436 (April 1999).

Xie, Weilin; Chipman, Jeffrey G.; Donald L. Robertson, R. L. Erikson; and Simmons,
Daniel L., “Expression of a Mitogen-Responsive Gene Encoding Prostaglandin Syn-
thase is Regulated by mRNA Splicing,” Proceedings of the National Academy of

Sciences USA 88: 2692–2696 (April 1, 1991).

98



Acronyms

ADR Adverse Drug Reaction.

ATP Advanced Technology Program. Operated by NIST, this program provides federal
grants for development of certain technologies by private for-profit firms.

BRDPI Biomedical Research and Development Price Index. A price index for inputs into
biomedical research, including personnel, laboratory equipment, and other inputs, de-
veloped by the Bureau of Economic Analysis of the Department of Commerce in co-
operation with the NIH and used by the NIH for budgeting purposes.

CDER Center for Drug Evaluation and Research. The unit of the FDA that evaluates
applications for drug approval (INDs and NDAs).

CRADA Cooperative Research and Development Agreement. A formal agreement between
a national laboratory and a private firm, one purpose of which is commercialization by
the firm of discoveries made by the lab.

CRISP Computer Retrieval of Information on Scientific Projects, a database containing in-
formation on all biomedical research projects funded by the U.S. Public Health Service,
which includes the NIH and other federal agencies which sponsor or conduct biomedical
research.

COO Chief Operating Officer.

COX Cyclooxygenase, an enzyme, also called Prostaglandin G/H Synthase (PGHS). At
least two forms of COX are known to exist: the “constitutive” form, COX-1, which
has an important role in the digestive system, and the “inducible” for, COX-2, which
has a critical role in the inflammatory process. Some researchers think there may be a
third form (COX-3) that has some role in producing fever.

FDA Food and Drug Administration.

GATT General Agreement on Tariffs and Trade.

GI Gastro-intestinal.

GDP Gross Domestic Product.

IND Investigational New Drug Application, submitted to the FDA before clinical (i.e.,
human) testing of the drug. If the FDA does not object within 30 days, the applicant
may begin clinical testing.

NASA National Aeronautics and Space Administration.

NBER National Bureau Of Economic Research.
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NCE New Chemical Entity. A new drug that is not merely a reformulation or combination
of existing drugs, but one based on entirely new molecule. Most pharmaceutical R&D
is directed at discovering and developing NCEs.

NDA New Drug Application, submitted after clinical testing is completed. If the FDA
believes the information contained in the NDA (including the results of clinical and
animal testing) shows that the drug is both safe and effective for a particular use, the
FDA approves the drug for marketing for that use.

NIH National Institutes of Health.

NIST National Institute of Standards and Technology.

NPV Net Present Value.

NSAID Non-Steroidal Anti-Inflammatory Drug. Historically, the term is used to refer to
non-selective COX inhibitors developed after aspirin, but technically aspirin and the
new COX-2 inhibitors are also NSAIDs.

PGHS Prostaglandin G/H Synthase, an enzyme, also known as Cyclooxygenase (COX,
q.v.).

NSF National Science Foundation.

PhRMA Pharmaceutical Research and Manufacturers of America, previously known as
Pharmaceutical Manufacturers’ Association (PMA).

PMA Pharmaceutical Manufacturers’ Association, later renamed Pharmaceutical Research
and Manufacturers of America (PhRMA).

R&D Research and Development. Includes basic research, applied research and product
development.

SBIR Small Business Innovation Research Program. Operated by the Small Business Ad-
ministration, this program sets aside a certain percentage of R&D contracts in each
federal government department for qualified small businesses.

100



SIC Standard Industrial Classification. The Census Bureau assigns SIC codes to each of
thousands of industries for reporting sales and other data on a per-industry basis.
SIC codes are hierarchical; that is, “two-digit industries” are aggregations of “four-
digit” industries, and so on. For example, SIC code 28 refers to “Chemicals and Allied
Products,” 283 refers to “Drugs,” 2834 to “Pharmaceutical Preparations,” and 28341-
28348 refer to drugs in different therapeutic classes, as shown in Table 2.

VAR Vector Autoregression. A regression model containing, as “independent” variables,
lagged values of the dependent variable.
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